论文部分内容阅读
由于高原海拔高、气温低、紫外线辐射强等气候特征,当机体进入高原,肺泡吸入氧分压(PaO2)降低,引起肺血管收缩,心输出量增加,过度通气,组织代谢障碍,导致微血管内皮通透性增加,神经细胞凋亡,人体出现头痛、头晕、气促、心悸、恶心、食欲缺乏等症状,严重者头部剧痛、共济失调、呼吸困难,引发各种急性高原病。HIF-1是专一调节氧稳态的关键介质,当机体处于低氧环境时,HIF-1能诱导血管内皮生长因子(VEGF)、红细胞生成素(EPO)、细胞色素氧化酶(COX)等一系列下游靶基因的转录而进行低氧适应。藏医认为隆型、培根型、隆培型等三类高原病易感人群,当进入高原时,由于高原气候具有“寒”“糙”的性质,加重了“隆”型人员“糙”“寒”的性质以及“培根”型人员的胃火虚弱,导致气机紊乱,从而使血气紊乱,导致高原病的发生。藏药蔓菁味甘性温,具有滋补、解毒,经“三胃火”消化后,化味甘,治隆病、赤巴病,而“水、土”偏盛的“甘”味能治疗“隆”引起的气机紊乱,从而治疗高原病。现代研究表明,蔓菁中的“甘”味成分多糖具有抗氧化、抗高原低氧的作用,对藏医“腊毒”症(高原病)引起组织损伤有保护作用。目的:1、建立蔓菁药材的质量控制方法和纯化分离蔓菁多糖;2、采用慢性高原低氧模型小鼠和急性高原低氧模型大鼠评价蔓菁多糖对高原低氧的保护作用,并在此基础上探讨其作用机制;3、采用代谢组学方法研究蔓菁多糖对急性高原低氧保护作用的相关生物标志物及关键通路,为蔓菁多糖预防高原低氧提供研究思路和奠定基础。方法:1、蔓菁药材质量控制的建立:收集不同来源的蔓菁样品,采用DNA Barcoding技术鉴定蔓菁药材,进行显微、薄层等鉴别,检查水分、灰分等,分别采用紫外分光光度法和HPLC测定总多糖和葡萄糖的含量,并建立了特征图谱。2、蔓菁多糖的纯化分离:考察了 Sevag脱蛋白和大孔吸附树脂脱蛋白脱色的方法,采用DEAE纤维素和Sephadex G100等柱层析法对多糖进行分离纯化,并采用高效凝胶渗透色谱(HGPC)测定纯化多糖的纯度和分子量。3、蔓菁多糖对慢性高原低氧小鼠模型的保护作用:模拟海拔7000m(7days)建立慢性高原低氧小鼠模型,记录造模期间小鼠的体重变化、饲料消耗量、观察心、脑、肺、肾等组织病理学改变,检测各组织的氧化应激指标,以及采用ELISA方法测定HIF-1α、EPO、VEGF蛋白的表达。4、蔓菁多糖对急性高原低氧模型大鼠的保护作用:采用急性高原低氧(9000m,24h)大鼠,记录造模期间大鼠的行为学变化,采用H&E、Nissl、TUNEL等病理染色观察大鼠脑组织海马区和皮质的病理学改变,免疫组化技术检测ISCU1/2、COX10、Caspase-3在海马区和皮质的蛋白表达,采用Western blot技术检测 HIF-1α、Bax、Bc1-2、Caspase-3 的蛋白水平,采用 qRT-PCR 检测 microRNA 210、ISCU 1/2、COX 10、Caspase-3 基因的表达。5、采用UPLC-MS代谢组学技术,检测空白对照组、模型对照组、蔓菁多糖给药组大鼠的脑组织代谢差异物,采用PCA、PLS-DA等多元统计方法分析组间差异,鉴别差异代谢物,寻找与差异代谢物密切相关的关键代谢通路,并对关键代谢通路进行了验证。结果:1、ITS2序列有效的区分蔓菁与其常见混伪品。对12批次蔓菁样品进行了测定,水分为10.40~16.32%、总灰分为7.18~10.22%、酸不溶性灰分在0.10~0.59%、浸出物在30.32~53.75%、总多糖含量8.79~4.76%,葡萄糖含量在10.32~21.43%。2、考察了大孔吸附树脂脱蛋白法,动态吸附优于静态吸附,动态吸附工艺为采用D301R树脂,在25℃,用1 BV/h,5 mg/ml pH=6蔓菁多糖溶液60 ml,以流速1 BV/h进行吸附,多糖保留率81.12%,脱色素率65.96%,脱蛋白率为53.86%。经DEAE-52纤维素、Sephadex G100等柱层析法,梯度洗脱后蔓菁多糖(回流提取)得到4个组分,分别为DEAE-52纤维素0.6 mol/1氯化钠溶液洗脱组分BRP-3B(重均分子量Mw:14254 Da)、BRP-4B(重均分子量Mw:16312 Da)和Sephadex G-100分离蒸馏水洗脱组分BRP-1B(重均分子量Mw:380883 Da)、BRP-2B(重均分子量Mw:227089 Da);蔓菁多糖(冷浸提取)得到5个组分,分别为DEAE纤维素0.3 mol/ml洗脱组分BRP-5C(重均分子量Mw:39606 Da,Sephadex G-100分离蒸馏水分离组分BRP-1C(重均分子量Mw:1540 Da)和BRP-2C(重均分子量Mw:25454 Da),0.1 mol/L氯化钠溶液洗脱组分BRP-3C(重均分子量 Mw:74182 Da)、BRP-4C(重均分子量 Mw:36518 Da)。3、蔓菁多糖对慢性高原低氧小鼠具有保护作用。与CHH模型对照组比较,蔓菁多糖能显著改善血清和心、脑、肺、肾组织的氧化应激标志物的含量,以及调控心、脑、肺、肾组织组织中HIF-1α、VEGF、EPO的表达。4、蔓菁多糖对急性高原高原缺氧大鼠具有保护作用,能升高AHH大鼠血清中SOD、GSH的水平,降低MDA、GSSG和LDH的含量,减少了大鼠脑组织神经元细胞的凋亡,降低Capase-3、Bax蛋白的表达,提高HIF-1α的蛋白和miR-210基因表达的水平,提高了 ISCU1/2、COX10基因和蛋白表达,说明蔓菁多糖减少低压缺氧下大鼠神经元的凋亡,激活HIF-1α/microRNA 210/ISCU 1/2(COX 10)信号通路,改善了线粒体的功能,达到脑保护作用。5、采用UPLC-MS技术检测空白对照组、AHH模型对照组、蔓菁多糖高剂量给药组大鼠的脑组织代谢物:空白对照组与AHH模型对照组比较共鉴定出了16个生物标志物及代谢通路12个,AHH模型对照组与BRP给药组比较共鉴定出了 41个生物标志物及代谢通路25个。BRP给药后显著回调的差异代谢物有7个,分别是半乳糖鞘氨醇、鞘氨醇、鞘氨醇-1-磷酸、肉豆蔻酰基肉碱、1-棕榈酰溶血磷脂酸、溶血磷脂酰乙醇胺(16:1(9Z)/0:0)、丙酮酸等,相关的5条通路为鞘脂代谢、半胱氨酸和蛋氨酸代谢、柠檬酸循环(TCA循环)、糖酵解或糖异生、丙酮酸代谢。通过分析表明,蔓菁多糖对急性高原低氧引起的脑损伤的保护机制与鞘氨醇-1-磷酸、鞘氨醇、半乳糖鞘氨醇所属的鞘脂代谢调节HIF-1的表达,并可通过PI3K/AKT信号通路,抑制线粒体蛋白细胞色素C释放、减少caspase激活;BRP能调节丙酮酸的柠檬酸循环(TCA循环)、糖酵解或糖异生、丙酮酸代谢等通路与HIF-1的激活密切相关,通过HIF-1α调节低氧下细胞代谢,降低了 TCA循环减少,降低ROS对线粒体的损伤,已达到低氧保护的作用。通过验证试验表明蔓菁多糖能激活鞘脂代谢中PI3K/Akt信号通路的表达。结论:本课题结合“味性化味”和物质精微代谢的藏医理论,开展了蔓菁药材的质量控制研究并对其“甘”味成分进行分离纯化,围绕HIF-1 α信号通路和能量代谢,从蛋白水平、代谢组学层面解释了藏药蔓菁“甘”味成分蔓菁多糖抗高原低氧的作用机制,为蔓菁多糖预防和治疗相关疾病的进一步研究提供了理论依据和数据支持。创新点:1.首次采用HPLC法测定了蔓菁药材中葡萄糖的含量并建立了特征图谱,并对冷浸提取的蔓菁多糖进行了分离纯化。2.开展蔓菁多糖改善慢性高原低氧所致的慢性高原病的药效和机制研究,由于慢性高原病由于体内的长期的代偿性反应造成心、脑血管系统改变,而本研究表明,蔓菁多糖具有良好改善各组织抗氧化应激,并能调节HIF-1α、VEGF、EPO表达的作用。3.以神经元细胞凋亡为切入点,开展蔓菁多糖预防急性高原低氧引起的脑损伤的研究,阐明了蔓菁多糖通过激活HIF-1a/microRNA210/ISCU 1/2(COX 10)信号通路以达到脑保护的作用。4.结合蔓菁“甘”味成分蔓菁多糖经“三胃火”消化后能治疗“隆”病和“赤巴”病,并改变机体代谢的藏医理论,采用UPLC-MS代谢组学方法,研究了蔓菁多糖对急性高原低氧大鼠的脑组织的差异性代谢产物及其代谢通路,从代谢物层面揭示了藏药蔓菁多糖预防AHH引起脑损伤的机制。