论文部分内容阅读
近年来,设备监测诊断中非平稳信号的分析一直是一个复杂而有意义的研究课题,局域波分析方法在几年的发展过程中,逐渐成为分析非平稳信号的有效方法之一。本文在总结前人研究成果基础上,结合工程实际需要,对局域波分析方法作了进一步的研究和发展,并以此为基础,在机械设备的诊断方法上进行了探索性的研究。 针对设备监测诊断中存在的非平稳问题,引入了局域波分析方法。该方法从信号瞬时频率的角度出发,将非平稳时变信号分解成为有限个局域波分量,每一个分量描述了时变信号中不同频率和尺度范围的固有振动模式,瞬时频率可以在每一个分量中随处定义。经过Hilbert变换得到局域波时频谱能够同时提供时域和频域的信息。 针对局域波分析方法目前的研究状况,分析了该方法中存在的问题:分解方法中的边界问题、分量的瞬时频率估计以及如何合理选择采样频率等问题。提出了基于包络均值法的改进算法;分析并验证了利用相位差分法进行瞬时频率估计的有效性和精确性;给出了进行局域波分析,信号采样频率的选择标准。 在此基础上,研究了局域波分析的频率多分辨特性及分解的尺度滤波特性,给出了不同时频谱图的频率分辨率的计算式和滤波器的表达式。通过对加噪信号的有效去噪检验了尺度滤波的可行性。提出了基于局域波时频谱的边界谱分析,以及频带能量分析方法,并运用这些方法对旋转机械和往复机械的不同故障进行了有效的诊断。 以一维局域波分解方法为基础,研究了二维局域波分解方法,对边界处的极值判断方法作了改进,有效的解决了插值曲面的边界摆动。制定了合理的筛选停止准则和分解停止准则。通过对图像去噪,检验了二维分解对于提取图像局域细节信息的有效性。同时,提出了基于二维局域波分解的图像诊断方法,通过对时频灰度图像的二维分解提取表征故障信息的图像细节部分,有效地实现了故障的特征提取。 以上研究工作在一定程度上丰富和完善了局域波分析方法,诊断应用表明本文中提出的方法能够有效的识别故障,解决实际问题。