【摘 要】
:
本文研究了一个反应-扩散-对流系统,该系统描述了在溪流或者河流这样的对流环境中藻类和贻贝间的相互作用.与非对流环境相比,该系统的动力学行为更加复杂.本文通过分析系统的半平凡稳态解以及特征值问题,得到了全局动力学行为.结果表明,系统存在一个临界的对流率和一个临界的扩散率,把动力学行为分成两种情况:(i)贻贝灭绝,藻类长期生存;(ii)贻贝与藻类永久共存.通过数值模拟,可以更加直观地得到扩散和对流对动
论文部分内容阅读
本文研究了一个反应-扩散-对流系统,该系统描述了在溪流或者河流这样的对流环境中藻类和贻贝间的相互作用.与非对流环境相比,该系统的动力学行为更加复杂.本文通过分析系统的半平凡稳态解以及特征值问题,得到了全局动力学行为.结果表明,系统存在一个临界的对流率和一个临界的扩散率,把动力学行为分成两种情况:(i)贻贝灭绝,藻类长期生存;(ii)贻贝与藻类永久共存.通过数值模拟,可以更加直观地得到扩散和对流对动力学的影响.
其他文献
中华民族传统美学是值得传承和赞扬的文化底蕴,几乎每个音乐人都把中华民族传统美学的优雅精致放在心里。而其中最有代表性的就是“气”和“韵”两个极具民族色彩的命题。例如在作曲家朱践耳的音乐创作中,多以民谣旋律为基准,在创新与改革的时候还能采用中西合璧的方式,进一步提升音乐色彩的多边形。音乐在表现手法上,其实多种多样,最显著的就是模仿“虚、情、静、淡”,然后结合传统音乐的表现手法,将“气、韵”进行融入和渗
山东筝派以其悠久的历史和浓郁的地方音韵特色,在众多的古筝流派中独树一帜,近代以赵玉斋、高自成、韩庭贵为代表的山东筝家所整理并创作和改编的一批筝乐作品,为山东筝曲在全国范围内得以流传奠定基础。《高山流水》作为山东筝曲的代表作,在广为流传的同时,备受筝人瞩目。在现今所听所见的山东筝曲《高山流水》中出现了多个版本,他们从谱面形态,指法编配,音响效果多有不同,但归纳起来基本都出自于赵玉斋、高自成、韩廷贵三
本文回顾了超导子、自同构、局部超导子和局部自同构的概念.之后,根据低维幂零李超代数的分类和矩阵的理论,本文分别确定了复数域C上三维幂零李超代数的所有局部超导子和局部自同构,四维幂零李超代数的部分局部超导子.
满族与日本的阿伊努民族在历史上都有着萨满信仰的传统,萨满信仰渗透在满族和阿伊努民族的社会生活、民族文化等诸多层面。研究这两个民族的萨满信仰,对世界文化人类学、民族学和民俗学都具有非常重要的意义,因此对其所做的研究近年来越来越受重视。然而,鲜有研究将这两个地域、信仰、民俗都很相近的民族联系起来,遑论对其萨满信仰的比较研究。对本研究而言,学术界客观上存在着研究空间,这既是填补研究空白,推进学术发展的良
威尔第是19世纪意大利歌剧复兴时期最具有代表的歌剧作曲家,他一生创作了许多脍炙人口的歌剧,被誉为“歌剧泰斗”。《阿依达》是威尔第成熟时期所创作的歌剧,是世界上最受欢迎的歌剧之一,也是世界歌剧舞台上常演不衰的经典剧目。《阿依达》作为威尔第歌剧创作成熟期最伟大的歌剧,将他此阶段的创作理念全部融汇到这部歌剧中。此外《阿依达》的其他艺术形式也在歌剧舞台中有着独树一帜的风格,威尔第将法国大歌剧辉煌宏伟的大场
维也纳古典乐派作曲家莫扎特创作了许多脍炙人口的音乐作品,其中最著名的代表作之一《费加罗的婚礼》这部歌剧更是轰动一时,深受世界各族人民的喜爱。该歌剧中的男中音代表性唱段《你想要跳舞,我的小伯爵》直到如今仍然是各大音乐会的热门歌曲。全文分为三个部分,第一部分主要分析了唱段的创作背景和调式调性。第二部分分析了作品的情感处理和舞台表现处理。第三部分结合笔者自身的学习经验,对作品的演唱技巧进行分析,包括语言
莫扎特是一位著名的作曲家,出生于奥地利。莫扎特凭借自己超人的记忆力及领悟力,从一路结识的各位杰出音乐家那里吸取了大量精华。在他可以称之为短暂的一生之中(1756–1791),他就已经创作了600多部音乐作品,这其中包括有歌剧20多部,极大的丰富了当时的歌剧,为当时歌剧的发展献出了巨大的贡献。在莫扎特的歌剧创作中,其中有许多经典剧目,其中最经典的歌剧之一,一部二幕歌剧《唐璜》,经常在世界各地的剧院上
混凝土折板式拟球面网壳是通过面切割球壳再网格化而成.混凝土折算厚度较小,稳定问题可能成为工程应用的控制因素.采用有限元法进行几何非线性全过程分析,讨论了主要参数对非线性稳定性的影响,并拟合临界承载力公式.结果表明:非线性屈曲为跃越屈曲并在密肋平板形成薄弱区,结构的屈曲位移约为跨度的1/47;结构的矢跨比应控制在1/7.5~1/5之间,提高矢跨比可增大结构的刚度;支座环梁刚度对结构非线性稳定性的影响
本文主要研究加权Amalgam空间上积分算子的局部有界性.首先,证明局部权的一些性质.其次,利用局部Vitali覆盖引理证明在局部权意义下good不等式成立,通过局部权意义下局部极大算子控制奇异积分算子,进而得到奇异积分算子的局部加权有界性.最后,定义局部加权Amalgam空间,利用局部权的一些性质,奇异积分算子的局部加权有界性以及局部Whitney覆盖引理,进而得到加权Amalgam空间上积分算
由于我国资本市场起步时间较晚,金融体系稳定性和抗风险性还有待提升,因此历史上曾多次出现“千股跌停”的局面,不仅直接损害了众多企业和投资者的利益,同时引发连环金融反应,大大降低资本市场的配置和融通效率,促使实体经济备受打击。因此上市公司股价崩盘风险的影响因素与作用机制一直是学术界研究的热点问题。同时,继2015年并购热潮之后,众多母公司因频繁并购形成了巨额商誉账面资产,为后续巨额商誉减值计提埋下隐患