形式三角矩阵环上的广义投射模与广义内射模

来源 :安徽大学 | 被引量 : 0次 | 上传用户:kangcj66
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
投射模和内射模是同调代数与模论的主要研究对象.它们的各种推广形式也得到广泛的关注与应用.另外,形式三角矩阵环是环的一类重要扩张,常被用来构造反例,这使得环与模理论更加丰富,更加具体.结合这两部分知识本文做了一些研究工作.全文共分三部分.   第一部分介绍了形式三角矩阵环上的模以及本文的研究意义和主要工作.   第二部分介绍了形式三角矩阵环上投射模的两种等价刻画方式.为讨论三角矩阵环上的广义投射模做理论准备,本章介绍了该环上子模,商模的刻画,并进一步讨论了三角矩阵环上模态射之间的性质.随后,本章介绍了三角矩阵环上Gorenstein-投射模的刻画,并分别给出了该环上的模是拟投射模和伪投射模的必要条件.   第三部分包含了本文的两个重要结论.文献[2]从三角矩阵环上的不可分解内射模剖析该环上的内射模.我们给出了不同于这一方法的另一种等价刻画.与本文第二部分结论对偶地,我们给出了三角矩阵环上Gorenstein-内射模的刻画,并加以详细证明.另外,本章又给出了三角矩阵环上的模是拟内射模和伪内射模的条件.
其他文献
本论文主要研究了两个大问题,即大型稀疏鞍点问题的迭代解法和矩阵方程(A1XB1,A2XB2)=(C1,C2)基于梯度的迭代算法.主要内容包括如下四章:   第一章介绍了鞍点问题及矩阵方程(A1X
本文工作之一是基于LaskarJ提出频率映射分析法(NumericalAnalysisoftheFundamentalFrequencies,NAFF),证明一种较LaskarJ情形下精度更高的窗口,Blackman窗口,此窗口在HunterC所
分数阶微积分作为一个经典的数学概念自从十七世纪就被人们所熟知,但是它并没有被广泛的应用于生活的各个领域。近几十年来,人们发现分数阶微积分对于改变和更好的帮助我们认识
目前EEG (脑电成像技术),MEG (脑磁成像技术)已经成为脑功能研究和临床诊断的重要技术手段。它们对偶极子的定位问题有着重要的研究价值。在研究EEG、MEG反问题时,大量的EEG、M
图G=(V(G),E(G))是一简单连通图,其中V(G),E(G)分别表示图G的顶点集和边集。图G的拉普拉斯矩阵的k个最大的特征值之和被定义为Sk(G)=k∑i=1μi(G),1≤k≤n.其中μi(G)(i=1,2,…,n)
近几十年来伴随着计算机应用技术的普及和非线性科学的不断发展,分支与混沌理论作为复杂的非线性动力学行为,不仅在应用数学、力学和物理学获得发展,而且被广泛应用于几乎所有自
混沌控制与混沌同步一直是这几十年来非线性科学中研究的一个热点,并在保密通信,神经网络和经济科学中得到了应用。其类型有:完全同步、广义同步、相位同步、时滞同步、投影同
伪随机序列在全球定位系统、码分多址系统、测量距离系统、扩频通信系统、流密码等领域都有广泛的应用。在这些应用领域中,对序列的伪随机特性的指标要求是有长的周期、良好
脉冲微分方程是微分方程理论的一个重要分支,它反映了事物在某个时刻的一种瞬间突变现象,这些类方程出现在理论物理学、控制论、人口动态、生物科技、机器人学和经济学的具体数
本文研究一类包含裂缝的复杂散射体的声波散射问题,为简单起见,我们只在R2中考虑这个问题,并且假设散射体由一条裂缝(开弧)和两个有界散射体组成,具体描述如下:   假设Γ是R2中