论文部分内容阅读
K325合金是一种固溶强化型镍基铸造高温合金,因其具有高的强度、优异的加工性能、良好的抗氧化腐蚀性能和铸造性能,成为700℃超超临界机组燃煤机组中箱体和阀体等大型铸件的候选材料。然而上述部件在服役过程中通常因晶界粗化导致塑性不足,从而产生开裂现象,因此本文通过添加微量元素B来提高合金晶界的强度,减小晶界裂纹萌生的倾向。此外,大型铸件在无法进行真空感应方式进行熔炼,需采用电炉与钢包精炼炉进行熔炼,该过程中加入的脱氧剂含量少量的Al和Ti元素,为此本研究通过往合金中加入适量的Al和Ti元素,以明确其在长期时效过程中对合金组织稳定性的影响。本文系的研究了微量元素B,Al和Ti元素对K325合金铸造组织、固溶组织、长期时效组织及室温和700℃力学性能的影响。K325合金的铸造组织呈现出典型的枝晶形貌,合金中的析出相为富Nb的MC型碳化物,铸造组织中无其他类型的沉淀相析出。研究了固溶处理工艺对K325合金的组织及力学性能的影响。当保温时间为1h,固溶温度在1150-1250℃时,随固溶温度的提高,碳化物回溶程度逐渐增大,枝晶偏析现象不再明显,合金成分的均匀性得以提升。当固溶温度为1200℃,时间在0.5-2h时,随保温时间的延长,晶内碳化物的数量逐渐降低。合金经1200℃固溶处理1h并水冷后,其高温屈服强度达到最大值196MPa,且延伸率达到52%。K325合金在650-750℃长期时效过程中,MC碳化物在时效过程中发生退化反应,其退化反应为MC+γ→M23C6。在时效过程中晶界上析出了富Cr的薄膜状M23C6碳化物,随着温度的提高及时效时间的延长,晶界发生粗化,同时部分M23C6碳化物转变为M6C碳化物;γ"相在650-750℃范围内均会析出,其粗化过程符合LSW理论,在650℃时其形核与生长较慢,而在750℃随着时间的延长γ"相会向δ相发生转变,700℃时γ"相具有最佳的生长动力学;δ相同样在650~750℃范围内均会析出,且时效温度为750℃时其粗化速率最快。研究了B对K325合金组织和性能的影响。在不同B含量的合金中未发现硼化物的析出。微量元素B加剧了合金中Nb元素在枝晶间的偏析行为,对其他元素的偏析影响不明显。B元素的加入减小了合金的固液凝固温度区间和二次枝晶间距。B元素对合金的固溶组织及室温、高温强度影响不明显,但是B元素的加入提升了晶界强度,合金在高温下的断裂方式由沿晶断裂向混合断裂方式转变,且穿晶断裂现象随B含量的提升愈发明显。当B元素含量为0.0025%时,合金的室温延伸率由40%提升至68.5%,高温塑性则由45%提升至60%。合金长期时效后,微量元素B偏聚于晶界和γ/M23C6界面,从而对M23C6碳化物形成元素向晶界的扩散起阻碍作用,使晶界碳化物由连续的薄膜状向离散的链状形貌转变,从而改善了晶界性能。B元素的加入显著提高了合金长期时效后的塑性,使合金的断裂方式由沿晶断裂变为沿晶与穿晶混合断裂。B元素的添加使晶界的形貌由连续的薄膜状变为离散的链状,减小了晶界处的应力集中,从而降低了晶界处裂纹萌生的几率;此外,断面上韧窝的数量明显增加,因而合金的塑性得以提升。研究了A1和Ti元素对K325合金组织和性能的影响。Al和Ti元素使合金铸造组织和固溶组织中的MC碳化物含量提高。Ti是MC碳化物的形成元素,因而Al和Ti元素的添加提高了MC型碳化物的析出量。Al、Ti对合金室温及高温瞬时拉伸性能影响不大,却显著提高了合金的持久寿命。合金长期时效后,少量Al、Ti的添加促进了γ"相的析出。由于Al和Ti原子可以替代γ"相中的Nb原子,从而改变了γ"相的晶格常数,使γ/γ"的共格应变降低,降低了γ"相的形核功;同时Al和Ti提高了 Nb元素的活度,使其在基体中的扩散速率增大,从而提高了γ"相的含量并使γ"相的尺寸增大。因此,Al和Ti元素的添加提高了组织中γ"相的含量和热稳定性,从而提高合金长期时效后的高温拉伸强度。合金经700℃长期时效1000h后,屈服强度由421MPa提升至563MPa,抗拉强度由626MPa增大至719MPa。B,Al和Ti元素对K325合金长期时效后的700℃拉伸的变形机制没有影响,位错与γ"相的作用机制为Orowan绕过机制。此外,密集分布的针状δ相和晶界上的碳化物对运动位错存在强烈的阻碍作用,使沉淀强化效果增强。