论文部分内容阅读
金属陶瓷材料复合了金属和陶瓷的某些物理化学特性而具有可调节的独特性能,如其热膨胀系数和机械性能介于金属与陶瓷之间,因此可更好地服役于许多特殊工况条件,比如热稳定和导电性优良的电阻元件或真空管,兼具耐磨和韧性的磨削工具。纳米材料因其晶粒尺寸效应也具有许多奇异的物理化学性质,得到全球科学与工商业的极大重视。本论文研究了纳米晶镍基金属-氮化物复合金属陶瓷涂层的结构调控及其对涂层的高温氧化行为和空蚀行为的影响,旨在深入理解纳米金属陶瓷材料的物理和化学性质,进而为新型金属陶瓷材料的发展和应用提供依据。本文设计了镍基NiCrAlYSiHfN/AlN多层膜和NiCrAlTiN金属陶瓷涂层,研究了磁控溅射和热处理对纳米金属陶瓷材料组织结构的影响机制,以及金属陶瓷材料组织结构对其高温氧化和空泡腐蚀行为的影响机制。得到的主要研究结果如下:1.具有NiCrAlYSiHfN/AlN层交替结构的多层膜涂层在1100℃氧化时,很快转化为β-(Ni,Cr)Al/AlN层交替结构,表面生成单一的α-Al2O3膜,其抛物线常数与β-NiAl合金相当。与β-NiAl合金表面氧化膜不同的是,多层膜表面的氧化铝膜结构具有粗晶/细晶层交替出现的特征,其机制为β-NiAl/AlN层逐层氧化。多层膜涂层在氧化过程中伴随着以下结构演变:1)AlN层连续性逐渐破坏;2)少量γ’-Ni3Al相颗粒和AlN颗粒在β相层中形成。2.在氧化初期多层膜涂层中较高的氮含量能够显著促进θ-Al2O3向α-Al2O3的转变,AlN颗粒的存在改变了氧化膜的生长方式。氮原子在氧化过程中可能掺杂到θ-Al2O3膜中产生更多的氧离子空位,从而促进θ-→α-Al2O3的相变。3.NiCrAlTiN纳米金属陶瓷涂层在1000℃真空退火3 h后由金属母相γ/γ’、沉淀析出的Ti2N/TiN纳米颗粒和AlN亚微米颗粒组成。其氮化物的相组成与氮含量有关。NiCrAlTiN纳米金属陶瓷涂层的抗空蚀性能显著优于奥氏体不锈钢304L、多弧离子镀硬质涂层TiN和等离子喷涂金属陶瓷涂层WC-12Co。但NiCrAlTiN的抗空蚀性能劣于NiCrAlTi金属涂层,而且NiCrAlTiN涂层中N含量越高,抗空蚀性能越差。这可能是因为氮化物的析出使得Y/γ’基体强度下降,抵消了氮化物析出强化的作用。另外,过高的退火温度和氮含量使得氮化物的粗化弱化了陶瓷颗粒/基体界面,也降低了涂层的强度。4.真空退火温度和时间对NiCrAlTi-xN的微观组织结构和抗空蚀性能有显著影响。在800℃下退火3 h的NiCrAlTi-3N涂层具有最佳的耐空蚀性能,优于NiCrAlTi涂层和等原子比NiTi合金试样。该涂层的组织结构展现出了纳米晶强化和第二相纳米颗粒强化对同时提高材料强韧性的有益影响。N掺杂降低了金属相的长大速率,析出的纳米δ’-Ti2N颗粒与金属相有半共格关系,从而提高了涂层的硬度、韧性和弹性回复率。NiCrAlTiN涂层空蚀坑附近基体晶粒出现层错和片层仅为几纳米的机械孪晶的形貌;空蚀坑最外层出现~10 nm厚的晶格扭曲带,扭曲带里的δ’-Ti2N颗粒也发生晶格扭曲;在扭曲带外、距离表面~20 nm处δ’-Ti2N颗粒依然与基体晶粒平行,未受到空蚀冲击的影响。上述变形方式有效地耗散了空蚀能量,协调了空蚀冲击引发的塑性变形。