【摘 要】
:
图的k-距离染色的初形最初由F.Kramer和H.Kramer在文献[2,3]中提出,后来被T.R.Jensen和B.Toft在文献[18]中表述为k-距离染色,即对于任意的正整数k,图G的k-距离染色是指颜色{1
论文部分内容阅读
图的k-距离染色的初形最初由F.Kramer和H.Kramer在文献[2,3]中提出,后来被T.R.Jensen和B.Toft在文献[18]中表述为k-距离染色,即对于任意的正整数k,图G的k-距离染色是指颜色{1,2,3,…,n}到图G的顶点集合的一个分配,满足距离不大于k的任意两顶点分配不同的颜色.图G的k-距离色数χk(G)是指G的k-距离染色中所需要的最少颜色数.本文研究了一些特殊图类的k-距离染色,文章分为四章: 1.介绍了与k-距离染色相关的概念和引理. 2.确定了几类特殊图的Mycielski图的k-距离色数. 3.研究了弱直积图的2-距离染色,给出了弱直积图的2-距离色数的可达界,并得到一些特殊图类的弱直积图的2-距离色数. 4.确定了单圈图的2-距离色数.
其他文献
本文结合了奇异有限元方法和罚参数方法求解二维区域上带角域奇性的斯托克斯方程。具体过程分为两步:第一步,在极坐标下,利用罚参数方法求解只在θ方向离散的斯托克斯方程的
本文讨论了四阶微分方程两点边值问题正解的存在性.这类问题通常用来描述工程中的梁方程. 第1章是本文的绪论部分,对研究的现状进行了简要的概述. 第2章研究了四阶两点
图像变形技术是在计算机图形学和数字图像技术的基础上发展来的,在影视,广告,医学上有着广泛应用。图像的变形操作涉及到不同区域之间的映射问题,通常情况下,人们并不考虑其映射的
在纠错码的理论研究中,Reed-Solomon码(以下简称RS码)扮演着重要的角色.RS码具有很强的纠错能力,它不仅适合纠正随机错误,而且适合纠正突发错误.近年来,很多学者在RS码的代数译码方
在这篇博士后出站报告中,我们主要研究满足一定曲率维数条件的度量测度空间的乘积曲率性质和局部到整体性质以及空间形式中的常平均曲率超曲面。
第一章,我们首先回顾Lott
假设f是紧黎曼流形M上的C1微分同胚,考虑一个紧不变集Λ,如果f在Λ上的控制分解此处公式省略:满足此处公式省略:,并且dim Ei=1(1≤i≤l)。则f是渐近熵可扩的,并且其拓扑熵是关
本文对双线性时间序列模型进行研究,探讨该模型下参数估计,交点估计以及基于变点的异常点挖掘问题,双线性时间序列模型通过双线性项对ARMA模型进行推广,形式上虽然比较简单,但问题
本文主要研究滤子方法在非线性约束优化问题中的应用.滤子方法最早是由Fletcher和Leyffer[49]提出的.该方法不涉及罚参数的选取,从而避免了罚函数方法中的不足.由于其良好的
在解析函数理论中,对于一般的解析函数理论已经比较成熟,为了扩展解析函数理论,本文研究了一种新的解析函数——单位根集合上的解析函数。在文献[1]中,作者给出了单位根集上的解