【摘 要】
:
机械旋转可重构反射阵天线是通过改变圆极化反射阵元的旋转角度,来调节阵元的反射信号相位,实现特定空间指向上的波束聚焦的一种新型可重构反射阵天线,具有结构简单、易于扩展、相位调节精度高等优点。但因其特殊的旋转结构,阵元的反射相位相对于传统的固定指向反射阵天线来说是可变的,具有一定的随机性,因此在使用之前需要对阵元的初始角度进行检测和补偿,以提高波束指向的精确度。本文提出了一种基于多目标位移测量雷达技术
论文部分内容阅读
机械旋转可重构反射阵天线是通过改变圆极化反射阵元的旋转角度,来调节阵元的反射信号相位,实现特定空间指向上的波束聚焦的一种新型可重构反射阵天线,具有结构简单、易于扩展、相位调节精度高等优点。但因其特殊的旋转结构,阵元的反射相位相对于传统的固定指向反射阵天线来说是可变的,具有一定的随机性,因此在使用之前需要对阵元的初始角度进行检测和补偿,以提高波束指向的精确度。本文提出了一种基于多目标位移测量雷达技术的阵元相位补偿方案,通过对天线结构进行改进,设计了一种工作于C波段的旋转波束可重构反射阵天线。该方案在传统的机械旋转可重构反射阵天线的基础上增加了微波开关调制电路,基于射频传输线原理,通过在微波开关后面连接不同微波负载的方式实现对阵元的接收信号的2ASK调制,并以此对阵元的反射信号相位进行逐个测量,得出当前阵元与参考阵元的相位差,再将对应的旋转角度反馈到阵元后面的步进电机,实现对单个阵元的相位补偿。针对设计方案,本文首先对反射阵天线的基本知识和发展状况进行了介绍,分析其相位补偿原理并计算出特定波束指向上的阵元相位补偿矩阵,利用HFSS仿真软件对反射阵天线进行建模仿真,验证相位补偿原理的正确性;然后详细推导了基于2ASK调制的相位测量技术的原理,并介绍了相位补偿的原理分析和具体的补偿方案;通过对系统进行软硬件设计,来实现阵元的信号调制和具体的相位补偿流程控制,最终对整个系统进行了设计实现,制作了24阵元的反射阵模型并进行了相位补偿的基本测试,结果表明:该方案能够准确测量出阵元的反射信号相位并进行合理的补偿,对于提高旋转可重构反射阵天线的指向精度,降低安装调试难度具有重要意义。
其他文献
目前,5G技术发展如火如荼,无线通信设备变得越来越丰富,因此通信系统小型化、集成化的需求也就使得无源器件——天线朝着平面化、紧凑型、集成化和宽带化方向发展。与此同时,透明天线可以在不阻挡光线传播的情况下收发电磁信号,能够应用在一些特殊需要透明化的平台。本论文针对天线对平面化、紧凑型、宽带化、透明化方面的需求设计了两款天线,主要内容如下:(1)设计了一种平面化紧凑型宽带透明超表面终端天线。该天线主要
图像在获取、压缩和传输过程中会被噪声污染而导致失真,不利于后续的高层次图像处理任务,因此图像去噪是图像预处理的关键步骤。自然图像的非局部自相似性先验是图像去噪领域最重要的先验之一,基于该先验的传统低秩近似去噪方法主要存在以下不足:一是标准核范数最小化通常会过度收缩每个奇异值,导致去噪后的图像过于平滑或模糊。二是现有方法只利用了图像的非局部自相似性,对整幅图像进行无差别的去噪处理,没有考虑到图像块的
合成孔径雷达(Synthetic Aperture Radar,SAR)可以实现对待测目标或场景高分辨的成像与探测,且不受气候和光照条件的影响。回波仿真(Raw Data Simulation,RDS)作为SAR相关研究的基础,它对SAR系统的设计、成像算法的验证和雷达参数的优化都至关重要。常规SAR-RDS大多基于理想地形假设条件,但实际场景通常比较复杂,剧烈的地形起伏将导致发射信号受到阻挡而产
智慧法院建设促使现代化的大数据、人工智能等信息新技术与司法审判工作深度融合,不但可以极大提高审判效率,还让司法公正来得更高效、更有保障。按需标注的优质司法数据是智慧法院建设的数据基础。然而,裁判文书、法律条文等司法数据专业性强、形式多样、不同应用数据标注需求不一。众包标注方案难以保障标注质量。聘请经验丰富的司法专家进行专家标注可操作性差、成本高、效率低下。如何实现司法数据的高质量、高效标注成为智慧
设备到设备(Device-to-Device,D2D)通信和非正交多址接入(Non-Orthogonal Multiple Access,NOMA)技术作为未来通信系统中缓解无线网络传输压力的有效手段,可以提升蜂窝网络中的频谱效率、能量效率以及用户连接数目,具有广阔的应用前景。因此,将NOMA技术应用到D2D通信中成为未来通信网络可预见的发展方向。D2D通信和NOMA技术的结合可以带来多方面的性能
卫星信道具有较强的多径效应和群时延特性,在传输过程中会造成信号的符号间干扰,严重影响通信质量,通常可以采用自适应均衡的方法解决。盲均衡技术凭借其无须训练序列的优势,成为卫星通信中使用最广泛的均衡技术。高阶QAM调制因具有更高的频带利用率被广泛用于高速卫星通信中,但是随着QAM调制阶数与信息传输速率的提升,传统盲均衡算法效果不佳。因此研究具有更低稳态误差,更快收敛速率的新型盲均衡算法具有重要意义。并
在现代生活中,人脸识别已遍布生活中的各个领域,如安防监控、移动支付等。尤其是随着物联网的飞速发展,在边缘端设备上部署人脸识别的需求正在快速增加。在移动设备或其它资源受限的小型边缘计算设备上,人脸识别算法的计算复杂度和计算效率将至关重要。然而,现有的基于深度学习的主流人脸识别算法往往需要大量的计算资源,基于传统机器学习的算法在无约束条件下面临识别率不足的技术挑战。因此,如何在计算资源有限的设备上部署
我国国土辽阔,地形复杂多样,是世界上地质灾害最严重、受威胁人口最多的国家之一,地质灾害种类多,危害巨大,对人类生命财产以及地球环境保护会造成巨大的损失且不可挽救,另一方面,地质结构的微变形也会影响基础建设和建筑工程的安全性,如大坝、桥梁、隧道的变形量一旦超过安全界限,就可能发生重大灾害。因此对边坡进行形变监测就显得尤为重要,现阶段边坡形变监测的解决方案费时费力、灵活性低、无法实现全天候监测、成本昂
第三代半导体材料碳化硅(Silicon Carbide,简称Si C)凭借其本身优越的特性,在功率器件的应用研究中逐渐成为研究热点,其主要特性具体表现为宽禁带、高热导率、高临界电场、高功率密度等等。而垂直双扩散金属氧化物半导体场效应晶体管(Vertical Double-Diffusion Metal-Oxide-Semiconductor Field-Effect Transistor,VDMO
大规模多输入多输出(Multiple Input Multiple Output,MIMO)技术利用多径传播来提高系统吞吐量和能量效率,成为了第五代移动通信网络中最有前途的关键传输技术之一。但是在时分双工模式下,受限于信道相干时间,导频数量有限,不同小区的用户间导频复用产生的导频污染严重影响了大规模MIMO系统性能的发挥。因此,如何在有限的导频资源下设计可靠的导频污染抑制算法是研究的重点和难点。针