【摘 要】
:
学生的数学学习受到学习动机的直接影响,出色的学习动机能够促进学生对于数学的思考并发挥学生的学习潜能.近年来,国内外有许多对于学生数学学习动机的研究,并取得了显著的成果.但是从学生数学水平的差异来研究学生的数学学习动机,在数学学科中并不多见.本文以学生所表现出的数学水平为分类标准,研究学优生、中等生和学困生数学学习动机的特点,并作对比,根据学习动机的差异为学生提供教学建议.本文通过查阅文献,给出了学
论文部分内容阅读
学生的数学学习受到学习动机的直接影响,出色的学习动机能够促进学生对于数学的思考并发挥学生的学习潜能.近年来,国内外有许多对于学生数学学习动机的研究,并取得了显著的成果.但是从学生数学水平的差异来研究学生的数学学习动机,在数学学科中并不多见.本文以学生所表现出的数学水平为分类标准,研究学优生、中等生和学困生数学学习动机的特点,并作对比,根据学习动机的差异为学生提供教学建议.本文通过查阅文献,给出了学生数学学习动机的框架,并采用了自编的“高中生数学学习动机表现调查问卷”,调查对象为江苏省苏州市某中学220名高三年级的学生.利用SPSS统计软件对收集到的数据进行统计分析,采用描述统计来研究学生学习动机的整体趋势;采用单因素方差法分析三组学生在各部分是否存在显著差异;采用皮尔逊积差系数来探求三组学生数学学习动机与成绩的相关关系,最后根据调查结果对学生进行访谈验证.通过调查研究发现:(1)整体上看,学生的数学学习动机是由内在动机和外在动机是共同作用的.内在动机起主要作用,外在动机有明显的补充作用.(2)学优生数学学习动机的特点是其内在动机在整体上要高于外在动机,内在动机是他们学习数学的主要动机,而学优生的数学成绩和外在动机呈显著地正相关性;中等生的特点是内在动机和外在动机相对均衡,数学成绩与内在动机具有显著的正相关性;而学困生则是内在动机低于外在动机,其学习动机对外在因素依赖较大.(3)学优生、中等生和学困生的最大差异体现在内在动机方面,依次显著降低;在外在动机方面,三组学生有差异但并不具有统计学意义.这表明对于学优生的而言,他们需要高质量外部条件的支持,让内在动机发挥更显著的作用来提高其数学成绩;对于中等生的培养应侧重于提高其课堂参与度,对数学的兴趣等来提高内在动机;而对于学困生则先从外在动机着手,特别是任课教师的影响,提高其外在动机和学习积极性,逐步内化为内在动机.
其他文献
数学课堂是师生进行数学教与学的主要场所,课堂对话反映教学的发生发展过程,是数学知识与数学思维的重要显性载体之一.受传统教学模式的影响,数学课堂中,尤其在新手教师的课堂中呈现出明显的“讲授式”教学特点,缺少师生之间对数学知识的探讨性对话.因此,研究数学课堂中优秀教师与新手教师师生对话的异同具有重要的实践意义.本研究基于IRF理论,将数学课堂作为可视化窗口,通过放大与缩小高中数学课堂的师生对话,从对话
纳滤膜能够实现二价和一价盐离子、盐离子和小分子有机物的分离,是化工、电池、生物制药、医疗等行业/领域中的核心材料之一。评价纳滤膜性能的重要指标是水通量和截盐性能。随着纳滤膜的应用发展,薄膜复合纳滤(TFCNF)膜以其独特的结构和良好的分离性能在纳滤膜中占据重要地位。虽然近年来薄膜复合纳滤膜发展迅速,但仍面临着通量和截留率之间的此消彼长现象(“trade-off”效应)。由于薄膜复合纳滤膜是由多孔支
从Hilbert开始,代数簇对应的齐次理想的自由分解一直是许多数学家感兴趣的问题,特别是D.Eisenbud[1]等人对平面上点的合冲给出了一些相关性质,并对平面上4个点以及5个点做了细致的研究,本文主要在前人的基础上,对平面上点的合冲问题做了如下两个方面的工作:首先,我们分类了平面上6,7,8个点的合冲,X是在射影平面P2上的有限个不同的点的集合,S=K[x,y,z]是射影平面P2上的齐次坐标环
近年来,通过神经网络求解偏微分方程引起广大的注意,尤其是高维情形.方程的解由一个网络表示,参数是通过最小化相关的损失函数获得.通常使用以下两种模型:一种是基于变分.另一种是基于残差.神经网络中对边界条件的处理与经典方法不同,通用策略是使用罚项,但这会导致模型误差,本工作使用两种代表性方法:Deep Galerkin方法(DGM)和Deep Ritz方法(DRM)使用罚项对不同边界条件的椭圆问题进行
最近,由于二维钙钛矿光电器件的高稳定性和低维钙钛矿较为容易的相变特征吸引了化学家的广泛关注。有机-无机杂化钙钛矿具有丰富的结构类型,可以通过改变有机胺阳离子的体积大小,来调控无机阴离子的维度和连接方式,也可以通过调整中心金属离子的元素类型及卤素阴离子的种类,改变材料的稳定性以及光电性质。然而,对于钙钛矿材料中的混合有机胺阳离子体系还有待深入研究,特别是含硫阳离子卤化物钙钛矿材料的研究十分有限,是值
设S=k[x1,…,xn]是域k上以x1,…,xn为变量的多项式环,M为一个有限生成的分次S-模.模M的投射维数表示M的极小分次自由预解的长度,M的正则度刻画了它的极小分次自由预解中合冲模的复杂程度,而M的深度则反映M距离Cohen-Macaulay模的远近程度,这些量一直是交换代数和代数几何方向的学者们关注的问题.由于无平方的单项式理想可以看成超图或图的边理想,从而无平方的单项式理想,特别是二次
离子通道是一种特殊的跨膜蛋白质,其作为一种介质传导离子流过细胞中的脂质双分子层,是生物体中电活动的重要基础.其中,门控特性是离子通道一个极其重要的性质.因此,研究离子通道门控性具有重要的意义.本研究采用多种方法对离子通道的门控性进行数学建模和计算模拟.首先,文章从郎之万方程、随机福克-普朗克方程以及广义福克-普朗克方程组三种不同角度计算模拟了 Na+在门控离子通道运动的平均首达时间(简记为MFPT
本文研究了在复合铁磁材料中,带快速震荡系数多尺度Landau-Lifshitz-Gilbert方程的均匀化.对于多尺度方程,利用渐近展开推导其均匀化方程.之后,在数学上用双尺度收敛的方法来严格证明.而对于其均匀化方程,我们在扰动系数A0(x)以及K0(x)的情况下,得出了稳定性估计,这里x=(x1,x2,x3)是空间变量.最后,一维空间例子用来验证收敛性以及mε和m0的L2范数误差是O(ε),三维
粘合是阿贝尔范畴和三角范畴的研究中一项重要内容,它在代数表示论,代数K理论,代数拓扑等领域中都有着重要应用.在以往的文献中,阿贝尔范畴的粘合和三角范畴的粘合总是单独研究的,本文通过将阿贝尔范畴与三角范畴粘合的有关结论作比较研究,让我们能够更好地理解两者之间的异同之处,从而对同调代数和代数表示理论中许多相关的概念有更深入的了解.本论文分六章.第一章是绪论,介绍论文选题的意义和主要结果,第二和第三章阐
在现实世界中存在着各种各样随机因素的干扰,会影响到种群数量的变化。许多情况下,这些随机因素的干扰对种群动力学起着至关重要的作用。另外,考虑到在实际情况下,种群密度越低,种群平均增长率越低甚至趋于灭绝,因此有必要引入Allee效应。以下是本文的研究成果及创新点:本文主要探讨了二维随机捕食者-食饵模型,并且在模型中考虑了 Allee效应。首先通过分析得出该模型存在唯一全局正解。其次证明了当参数满足一定