【摘 要】
:
利用环境射频信号(Radio Frequency,RF)作为载波的环境背向散射通信(Ambient Backscatter Communication,ABC)技术能够在微瓦级的功耗下实现无线通信,是低功耗物联网(Internet of Things,IoT)极具潜力的实现方案之一。然而,环境射频信号来源复杂,信号强度远大于背向散射信号,对在同一信道传输的背向散射信号造成了严重的自干扰。自干扰使得
论文部分内容阅读
利用环境射频信号(Radio Frequency,RF)作为载波的环境背向散射通信(Ambient Backscatter Communication,ABC)技术能够在微瓦级的功耗下实现无线通信,是低功耗物联网(Internet of Things,IoT)极具潜力的实现方案之一。然而,环境射频信号来源复杂,信号强度远大于背向散射信号,对在同一信道传输的背向散射信号造成了严重的自干扰。自干扰使得接收端难以从环境射频信号中解调出背向散射信号,严重制约了系统的传输速率和通信距离。现有的自干扰抑制方案存在背向散射电路模块功耗过高或者频谱资源占用过多的问题,这些问题限制着自干扰抑制技术的发展。因此本文主要针对环境背向散射通信的自干扰抑制问题展开研究:(1)针对远距离环境背向散射通信场景,提出将LoRa信号的频率进行微小搬移的自干扰抑制方案。所提方案中背向散射信号与原始射频信号存在频率间隔,根据线性调制扩频(Chirp Spread Spectrum,CSS)技术中各个LoRa信号完全正交的特点,通过理论推导计算出频移后的背向散射信号与射频信号接近正交,从而抑制了自干扰。进一步,利用低功耗功分器和四分波长传输线设计了单边带频移传输背向散射电路,该电路消除了多余边带的干扰,提高了背向散射信号强度。基于所提方案,在接收端设计了一种频偏补偿的解调算法进而恢复微弱的背向散射信号。基于以上方案,利用原型实验系统评估了系统在远距离场景下的性能。实验结果表明:所提自干扰抑制方案不仅降低了环境射频信号的自干扰,而且系统在微瓦级功耗下传输距离达到近350m。(2)针对近距离环境背向散射通信场景,提出将Wi-Fi信号整体频移使背向散射信号在保护间隔带传输的自干扰抑制方案。该方案利用Wi-Fi信号未携带信息的保护间隔传递背向散射信息,能够显著提高系统整体频谱利用率。利用消除高次谐波的多阻抗网络和低功耗现场可编程门阵列(Field Programmable Gate Array,FPGA)设计了双边带频移传输背向散射电路,使背向散射信号频移至各子载波的中心频率上,进而降低旁瓣干扰。根据频移后的信号特征,在接收端设计了一种相关解调算法,结合最小二乘法(Least Square,LS)进行信道估计,进而降低接收端的误码率。基于以上方案,本文利用原型实验系统评估了系统在近距离场景下的性能。实验结果表明:在不占用相邻信道的前提下,所提自干扰抑制方案能够达到10kbps左右的传输速率。
其他文献
目的:肝纤维化是多种肝脏疾病的病理特征,其本质是肝星状细胞分泌的细胞外基质(ECM)代谢失衡,合成增多而降解减少。肝星状细胞(HSC)活化是肝纤维化发生发展的关键细胞学机制,本课题组前期通过全基因组表达芯片分析,在活化肝星状细胞中找到差异性表达的自噬相关基因BNIP3。Bnip3(Bcl-2/腺病毒E1B-19k Da相互作用蛋白3)是参与调节细胞自噬、凋亡和基因转录调控的多功能分子,我们推测在肝
低频通信得益于低频信号的强介质穿透能力,主要应用于透地通信和水下通信等。中低速数据传输常使用频移键控(Frequency-Shift Keying,FSK)调制作为通信方式,这是因为FSK具有抗噪声能力强与抗衰减性能好等优点。目前常用感应式磁天线接收低频信号,但是其体积和质量较大,为实现接收天线的小型化,本文基于磁电效应研究了高灵敏度低噪声低频通信磁电天线。相较于现有的直接天线调制的磁电天线,本文
神经元形态重建,是从三维神经图像中量化神经元的拓扑结构和几何特征。神经科学研究表明,神经元的量化数据可以直接用于神经元形态相关的统计分析和生物学分析,已成为神经图像数据通往神经科学新知识的桥梁。神经元由胞体和神经纤维构成,神经纤维的投射揭示了其信息传递的过程。神经纤维重建是神经元重建中最重要的一个环节。现今,神经纤维重建工具的效率较低,其原因之一是,在分离缠绕的神经纤维时,难以有效地识别神经纤维的
随着人工智能技术的飞速发展,智能机器人越来越多地出现在人们的生活中,并且在一些领域里已经在能力表现上超过了人类,比如,围棋、乒乓球等。未来,随着科技的进步,智能机器人在越来越多的领域超过人类可能会成为常态。前人的研究表明,智能机器人会让消费者产生身份威胁感和厌恶感。那么,对于那些智能机器人在能力上超过了人类的领域,人们是会基于竞争的心态更加愿意参与该领域的项目,还是会产生消极心态而不愿意再参与该领
背景:卵巢癌是最致死的妇科肿瘤。由于卵巢癌基因组高度不稳定和肿瘤异质性,卵巢癌患者复发难以避免,并且不可治愈。目前迫切需要找到一个有效的靶点改善卵巢癌的预后。C/EBPβ募集组蛋白3赖氨酸79(H3K79)甲基转移酶DOT1L,使染色质维持在开放状态,促进多种基因的转录,包括DNA损伤修复通路、铂耐药基因和促肿瘤生长信号通路,提示C/EBPβ可能是调控卵巢癌恶性表型的主要调节因子。目的:本研究旨在
随着硅基MEMS工艺技术与应用水平的不断提高,MEMS的结构从二维结构发展到三维结构,高深宽比微沟槽结构因其具有狭窄而垂直的空气间隙和较大的比表面积,广泛应用于梳齿状微电极阵列、微纳谐振器、加速度传感器、超级电容器、光栅等领域。为了提高MEMS器件的质量并确保器件产率,需要对MEMS高深宽比三维特征尺寸进行测量与分析,在MEMS高深宽比三维特征尺寸中,以深度、宽度、侧壁角这三种参数对MEMS器件性
最近几十年,关于非线性浅水波方程的研究已取得了许多重大成就.其中,对于里程碑式的Camassa-Holm方程的研究更是为许多专家学者所倾心.不同于传统的关于CH方程的研究,本文研究了模拟湍流的带粘性项的Camassa-Holm方程,也被称为Navier-Stokes-alpha方程.我们研究了在两种不同的扰动下孤立波解的存在性,分别为:带有粘性项的CH方程和具有非牛顿流体性质的CH方程.在本文中我
电磁超声测厚具有非接触的优点,在高温、在线、不停机检测中有着广阔的前景。然而,电磁超声测厚传感器换能效率及信噪比低限制了其进一步工程应用。针对这一问题,本论文研究传感器结构和激励参数对测厚信号的影响并开发相应信号处理方法,以提高传感器换能效率、检测效率和测厚精度。首先,提出基于涡流能量分配原理的电磁超声测厚传感技术并研制换能效率高的电磁超声测厚传感器。在分析电磁超声洛伦兹力换能机理的基础上,获取试
基于多芯光纤的强度调制-直接检测空分复用传输系统凭借其快速成倍地提升传输容量的优势,在数据中心短距光互连中应用潜力巨大。然而,高纤芯密度的多芯光纤引入了新的物理损伤——芯间串扰。在灵活光网络中,芯间串扰会显著恶化传输质量参数,造成误码率的增大,甚至信号中断。同时,串扰在时域与频域中表现出波动特性。在传输强载波的信号时,例如OOK与PAM4,该波动会更加剧烈。因此在空分复用光网络中,急需引入光性能监