近似直接约化法在扰动Burgers方程中的应用

来源 :西北大学 | 被引量 : 0次 | 上传用户:feixiete2009
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
在现实生活中,我们碰到的很多问题都可以抽象出来,成为解决一个偏微分方程的问题。这些偏微分方程问题可以被分为两大类,一类是线性问题,一类是非线性问题。随着科学的逐步发展,线性问题已经得到了全面的发展,因此,非线性偏微分方程成为了众多科学家研究的重点。而在这其中,有这样一种非线性方程,方程中带有一个无穷小参数,我们把这类方程称为非线性扰动方程。现今,这类方程已成为科学家们的主要研究对象。然而,大家最为关心的是要运用什么样的方法才可以解决扰动问题的方程。扰动定理的出现,就为解决带扰动的非线性方程提供了一个很好的工具。Fushchich和Shtelen运用扰动定理,将扰动定理与对称约化结合起来,建立了近似对称约化法。这个方法就能够很好的解决一部分带扰动问题的非线性微分方程。而本篇文章所运用的方法,是前人受了近似对称约化法的启示,把扰动定理同Clarkson和Kruskal的直接约化方法相结合,形成的新的解决扰动方程问题的方法—近似直接约化法。本篇文章主要运用近似直接约化法来讨论带有三阶色散和二阶色散的扰动Burgers方程。通过运用扰动定理得到一个级数解的表达形式,再由级数解得到一个微分方程组,通过每一个微分方程中某个倒数前的系数分别成比例,从而不断地对原微分方程进行约化。最后达到解决扰动方程问题的目的。
其他文献
什么是数论?数论是研究数的规律,特别是对整数的性质进行研究的数学分支.和几何学一样,数论是最古老而又一直活跃的数学研究领域.在我国近代,数论是发展最早也是最快的数学分支之一,而其中对于函数均值的估计和对其算术序列等的研究是很多学者数论研究的热点话题.1993年,美籍罗马尼亚著名数论专家Florentin Smarandache教授在其著作《只有问题,没有解答!》一书中提出了105个关于算术函数、特
自然科学、工程技术领域,以及数学理论研究本身的许多问题都可以归结为求解积分方程问题,尤其是求解非线性积分方程问题.Wolff势和Wolff型积分方程在非线性微(积)分方程的研究中发挥着重要作用.本文运用积分形式的移动平面法、齐次模估计和测度分类等方法,研究了一类Wolff型完全非线性积分方程组(?)u(x)=Wβ,γ(f(u,v))(x)x∈Rn (?)v(x)=Wβ,γ(g(u,v))(x)x∈
形式概念分析,也称概念格理论,是由德国Wille. R教授于1982年提出的,用于概念的发现、排序和显示.概念格是知识表现的一种模型,依据知识体在内涵和外延上的依赖或因果关系,建立的概念层次结构,是数据分析与规则提取的有效工具.Y.Y. Yao, Duntch和Gediga把粗糙集中的近似算子引入到概念格中,构造出两种新的概念格:面向对象概念格和面向属性概念格.这两种概念格既丰富了概念格理论,又为
守恒律在应用数学中是普遍存在的,它反映了某些物理量不随时间改变的一种现象.在孤子理论中,守恒律在讨论孤子方程可积性中起着十分重要的作用,无穷多个守恒律和孤立子的存在是密切相关的的,事实上,具有孤立子解的非线性发展方程,大都有无穷多个守恒律.因此,就一个孤子系统而言,寻找其无穷守恒律,对于证明此系统的可积性具有重要的现实意义与理论意义.对连续的可积系统,自从Miura、Gardner和Kruskal
随着科学技术的快速发展,科学研究的核心已从原有的线性转向现代的非线性方向.非线性现象出现在科学与工程技术的众多领域,很多非线性科学问题的研究,可以用非线性方程这一数学物理模型来简练而准确的描述,然而求解非线性方程长期以来都是物理学家和数学家研究的重点.守恒律的概念在微分方程求解过程中起着举足轻重的作用,因而寻求守恒律常常是方程求解的第一步.守恒律对于讨论非线性科学中方程解的稳定性分析和全局行为,以
形式概念分析(Formal Concept Analysis)是德国数学家Wille R.于1982年提出的,用于概念的发现、排序和显示。概念格理论是形式概念分析的核心,它的基本概念为形式背景和概念。从2005年张文修等人较为完整的提出概念格的属性约简理论以后,许多专家对这个课题做了大量的研究并成为形式概念分析的重要问题之一。对于经典的形式背景,对象和属性的关系集为二值关系,它的关联格是由0和1的
概念格理论,亦称形式概念分析,首先是由德国数学家R. Wille于1982年提出的,用于概念的发现、排序和显示。粗糙集理论是波兰数学家Z. Pawlak于同一年提出的一种数据分析的数学理论。粗糙集理论与概念格理论作为有效的,具有巨大潜力的知识发现工具,很受人工智能工作者的关注。目前,它们正在被广泛应用于模式识别、机器学习、决策分析、计算机网络、数据挖掘等领域。概念格和粗糙集理论从不同侧面来研究和表
数论在数学中具有特殊的地位,高斯曾称赞道:“数论是数学中的皇冠.”众所周知,数论主要是一门研究算术函数性质的学科,与很多著名的数学问题都有紧密的联系.罗马尼亚的著名美籍数论学者Florentin Smarandache教授曾在1993年编著的一本书:《Only problems.Not-solutions》中提出了105个尚未解决的数论问题,这些问题引起了许多学者的研究兴趣,经过学者们的不懈努力,
循环码在编码理论的研究中占据着重要的地位.本文主要研究了有限环R上循环码的一些性质,得到了以下主要结果.首先,我们利用代数学相关知识,构造了一个含有16个元素的有限环R,并证明了该环是一个有单位元的可换环;通过将数域F2上线性码的概念延伸到环R上,定义了一个一元多项式环R[x]到环F2[x]上的Gray映射,进而得到剩余类环上的所有理想,并研究了任意一个理想所具有的结构.其次,在环R[x]中利用同
数论称为数学中的皇冠,其中关于算术序列的性质及函数的均值问题非常重要.罗马尼亚数论家F. Smarandache在1991年出版的《只有问题,没有解答!》中提出了一百多个未解决的数论问题.如著名的Smarandache函数S(n),许多学者对这一函数都进行过研究,并得到了非常有意义的结果,但随着此函数在各个领域中的广泛应用,它的更多性质有待于我们进一步探索.基于此,本文在前人的理论基础上对Smar