连续可积系统无穷守恒律的构造

来源 :西北大学 | 被引量 : 1次 | 上传用户:nbbob
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
守恒律在应用数学中是普遍存在的,它反映了某些物理量不随时间改变的一种现象.在孤子理论中,守恒律在讨论孤子方程可积性中起着十分重要的作用,无穷多个守恒律和孤立子的存在是密切相关的的,事实上,具有孤立子解的非线性发展方程,大都有无穷多个守恒律.因此,就一个孤子系统而言,寻找其无穷守恒律,对于证明此系统的可积性具有重要的现实意义与理论意义.对连续的可积系统,自从Miura、Gardner和Kruskal发现KdV方程拥有无穷守恒律以来,先后出现了一系列构造其无穷守恒律的方法.但是仅凭人力来构造一个系统的守恒量并非易事,更多守恒律的发现必须也应当借助于计算机来完成.本文分三部分就连续可积系统讨论其无穷守恒律的构造:第一部分简要介绍了可积系统的可积性及可积系统无穷守恒律的研究概况.第二部分通过具体的实例就(1+1)维具有Lax可积性的连续可积系统介绍了一系列构常用的造其无穷守恒律的方法,并对这些方法进行了比较分析,一般情况下,一个连续可积系统的无穷守恒律或者守恒量可以通过以下几个途径来获得:通过Bdcklund变换、Riccati对偶方程、特征函数的形式解、散射问题及散射量α(入)的渐进展开式,通过迹恒等式构造多元系统的守恒律.这些方法虽然各异,但它们之间通过Lax对实现其内在联系,构造步骤基本上可分为三步:首先,由Lax对的空间部分导出Riccati方程.其次,对Riccati方程级数展开从而获得关于系数的递推公式.最后,由Lax的时间发展式来构造守恒律的一般表达式,然后对递推公式中的系数依次取值即可得到系统的无穷守恒律.第三部分详细研究了根据齐次微分方程等秩性质和标度对称属性来构造守恒律的较为简洁有效的一种方法—待定系数法,该方法首先根据齐次微分方程等秩性质和标度对称属性构造出含待定系数的多项式守恒密度的具体形式,然后利用守恒律的定义及Euler算子确定出守恒密度中的待定系数,最后利用同伦算子得到相应的守恒流,从而获得非线性微分方程多项式形式的守恒律.最后在该方法的基础上借助于符号计算系统Maple构造了几个非线性发展方程组不依赖于自变量的多项式形式的守恒律.
其他文献
本文主要研究的是*-半环上的不动点理论.研究结果如下:1.研究了强归纳*-半环.给出了强归纳*-半环的加法幂等元集的一些性质;得到了强归纳*-半环(归纳*-半环)是对称强归纳*-半环(对称归纳*-半环)的一个充分条件;证明了强归纳*-半环的形式幂级数半环也是强归纳*-半环.2.研究了满足升链条件(ACC)的*-λ-半环.得到了满足ACC的*-λ-半环是连续*-半环和对称*-λ-半环;进而证明了满足
各种算术序列和数论函数的性质研究一直是数论研究的核心内容.著名美籍罗马尼亚数论专家Florentin Smarandache教授于1993年出版的《只有问题,没有解答!》一书中明确提出了105个关于特殊序列,算数函数的数学问题及猜想.随着这些问题的提出,许多数论爱好者对此书中尚未解决的若干问题进行了探讨和研究,得到了一些极具学术价值的研究成果,推动数论不断向前发展.正是基于对上述问题的兴趣,本文针
本文以常微分方程分支理论为基础,深入地研究了两类高维神经网络动力系统的Hopf分支,从神经网络模型的提出背景出发,用高维Hopf分支定理和D-划分定理分别讨论了以T1,…,Tn为时滞,传输系数b=bij(i,j=1,…,n)为分支参数的一类n维常时滞神经网络模型和以T为分支参数的一类既有常时滞又有连续时滞n维神经网络模型的Hopf分支的存在性,并用中心流形定理和规范型理论讨论了Hopf分支产生空间
现代宇宙学是从1916年爱因斯坦将其引力场方程应用于整个宇宙而拉开序幕的。之后,人们陆续发现了宇宙在膨胀,提出了宇宙诞生于大爆炸等理论,并对宇宙内容物作了详尽的研究,尤其是1998年人们对Ⅰa-型超新星的观测结果使得人们对宇宙的认识又跨越了一步。1998年人们对Ⅰa-型超新星的观测表明,宇宙是在加速膨胀的。而若仅在一个由引力主宰的宇宙中是不可能出现宇宙加速膨胀的。为了解释这一现象,人们提出了一些理
Holling-Ⅳ型功能反应函数反映了当生物的营养基的浓度过大不仅不会促进生物的生长,反而会出现“抑制”的现象。Holling-Ⅳ型功能反应函数的提出对于研究生物种群学中食饵-捕食系统的诸多问题具有特别重要的意义。目前研究的Holling-Ⅳ型功能反应函数有两种,一种是简化后的Holling-Ⅳ型,即φ(x)=(mx)/(a+(x~2))另一种则是一般形式的Holling-Ⅳ型,即φ(x)=(mx
随着科学的不断发展,人们已经意识到非线性现象在自然界和人类社会领域广泛存在.在非线性系统的研究中守恒律扮演着越来越重要的角色.从本质上说,守恒律源于对称,而守恒律与对称的研究也经历了从相互独立到相互综合的过程.在偏微分方程的线性化,可积性方面守恒律有重要的作用,有助于得到偏微分方程的解析解和数值解.众所周知,在偏微分方程的守恒律研究中, Noether定理起着重要的作用.但是对于发展方程Noeth
1982年,德国学者R.Wille首次提出了形式概念分析(Fomal Concept Analysis),也称概念格理论,是一种用于概念的发现、显示和排序的数据分析方法.波兰教授Z.Pawlak于同年提出了粗糙集(Rough Sets)理论,它是一种用于知识发现和数据分析的数学工具.概念格理论与粗糙集理论是两种完全不同的挖掘和分析数据集中隐含知识的方法.I. Duntsh、G.Gediga和Y.
什么是数论?数论是研究数的规律,特别是对整数的性质进行研究的数学分支.和几何学一样,数论是最古老而又一直活跃的数学研究领域.在我国近代,数论是发展最早也是最快的数学分支之一,而其中对于函数均值的估计和对其算术序列等的研究是很多学者数论研究的热点话题.1993年,美籍罗马尼亚著名数论专家Florentin Smarandache教授在其著作《只有问题,没有解答!》一书中提出了105个关于算术函数、特
自然科学、工程技术领域,以及数学理论研究本身的许多问题都可以归结为求解积分方程问题,尤其是求解非线性积分方程问题.Wolff势和Wolff型积分方程在非线性微(积)分方程的研究中发挥着重要作用.本文运用积分形式的移动平面法、齐次模估计和测度分类等方法,研究了一类Wolff型完全非线性积分方程组(?)u(x)=Wβ,γ(f(u,v))(x)x∈Rn (?)v(x)=Wβ,γ(g(u,v))(x)x∈
形式概念分析,也称概念格理论,是由德国Wille. R教授于1982年提出的,用于概念的发现、排序和显示.概念格是知识表现的一种模型,依据知识体在内涵和外延上的依赖或因果关系,建立的概念层次结构,是数据分析与规则提取的有效工具.Y.Y. Yao, Duntch和Gediga把粗糙集中的近似算子引入到概念格中,构造出两种新的概念格:面向对象概念格和面向属性概念格.这两种概念格既丰富了概念格理论,又为