论文部分内容阅读
光学相干层析成像(Optical coherence tomography,OCT)技术利用光学相干门获取样品内部的断层结构,是一种无损、高灵敏、微米级分辨率的成像技术。相比第一代时域OCT技术,第二代的谱域OCT技术在成像速度和灵敏度上具有显著的优势,在临床眼科成像、功能成像和工业检测等领域发挥了重要作用。本文的主要内容为正交色散谱域OCT系统及其应用研究,具体工作包括:研制了超大成像量程的正交色散谱域OCT系统,该系统基于由光栅和虚像相控阵列组成的正交色散光谱仪。提出了完整的光栅和虚像相控阵列的正交色散理论,解决了由二维正交光谱重建出一维光谱时出现的光谱匹配误差和周期性强度调制问题。创新性地提出了使用主动生成的干涉条纹进行正交色散光谱标定的方法,使正交色散光谱仪成功地应用于谱域OCT成像。该系统实现了超高的光谱分辨率(2 pm),超大的系统采样率(105),和超过100mm的超长成像量程。基于正交色散谱域干涉仪的透镜间距测量应用研究。提出了一种利用实际测量得到的相位差重建复干涉光谱的算法,该算法在应用中实现了超过80dB的直流项抑制比和超过60dB的镜像抑制比。在此算法的基础上,利用正交色散谱域干涉仪的超大量程,并结合优化多通道光谱位相的高精度光程测量方法,实现了快速、高精度、大量程的透镜间距测量。与现有的测量产品相比,该测量系统在测量精度上提高了一个量级,测量速度上提高了两个量级。设计并研制了基于光程编码的大焦深、高分辨OCT成像系统,以解决光学成像中横向分辨率与焦深之间的矛盾。该系统利用光程编码原理和正交色散谱域OCT系统的超大量程合成了一个长焦深的针状光焦点。自制了一个用于生成多个不同光程光束的光程编码器,并使用精确设计的光学系统将多个光束聚焦在样品不同深度处用于成像,提取所得OCT图像中每个光束焦深范围内的光照明所得图像并进行拼接,即可得到一个完整的大深度范围内高横向分辨率的样品图像。相比于传统成像系统,该系统实现了四倍的焦深延长,在240μm的深度范围内保持了 2.5μm的横向分辨率。