论文部分内容阅读
近年来,随着数学和物理的不断发展,人们开始研究Hom型李(超)代数。我们知道,Hom-李(超)代数本身就是李(超)代数的某种形变,当Hom-李(超)代数的扭曲映射为恒等映射时,Hom-李(超)代数就退化为原来的李(超)代数,所以Hom-李(超)代数可以看作是李(超)代数的推广。分解和单性是李理论中两个重要的研究内容,对于Hom型李(超)代数也可在这些方面进行研究。孤立子理论是非线性科学的研究主体之一,可积系统以及可积系统是否具有Hamilton结构也是非线性科学研究的主流方向。利用李代数的结构建立孤立子可积系统,以及扩充原有的可积系统并且得到其Hamilton结构是孤立子理论中重要的研究课题。本文一方面研究了分裂的对合的正则Hom-李代数和三类分裂的正则Hom型李超代数的分解和单性;另一方面扩充了两类李代数上的孤立子可积系,得到了孤立子可积系的双可积耦合和三可积耦合及其Hamilton结构。 本研究主要内容包括:⑴研究了分裂的对合的正则Hom-李代数的分解和单性。首先,定义了分裂的对合的正则Hom-李代数和它的根连通。利用根连通的性质,得到了具有对称根系的分裂的对合的正则Hom-李代数分解成若干理想的直和的充分条件。其次,得到了具有对称根系的分裂的对合的正则Hom-李代数是单的充分必要条件。最后,得到了具有对称根系的分裂的对合的正则Hom-李代数分解成若干单理想的直和的充分条件。⑵研究了分裂的正则Hom-李超代数,分裂的正则δ-Hom-Jordan李超代数和分裂的正则BiHom-李超代数的分解和单性。首先,定义了分裂的正则Hom-李超代数和它的根连通。利用根连通的性质,刻画了具有对称根系的分裂的正则Hom-李超代数分解成若干理想的直和的充分条件。并且得到了具有对称根系的分裂的正则Hom-李超代数是单的充分必要条件和具有对称根系的分裂的正则Hom-李超代数分解成若干单理想的直和的充分条件。其次,给出了分裂的正则δ-Hom-Jordan李超代数的定义和它的根连通。利用其根连通的性质,刻画了具有对称根系的分裂的正则δ-Hom-Jordan李超代数分解成若干理想的直和的充分条件。并且刻画了具有对称根系的分裂的正则δ-Hom-Jordan李超代数是单的充分必要条件和具有对称根系的分裂的正则δ-Hom-Jordan李超代数分解成若干单理想的直和的充分条件。最后,定义了分裂的正则BiHom-李超代数和它的根连通。利用根连通的性质,刻画了具有对称根系的分裂的正则BiHom-李超代数分解成若干理想的直和的充分条件。并且刻画了具有对称根系的分裂的正则BiHom-李超代数是单的充分必要条件和具有对称根系的分裂的正则BiHom-李超代数分解成若干单理想的直和的充分条件。⑶研究了李代数S O(3)和S O(4)上的孤立子可积系的双可积耦合和三可积耦合及其Hamilton结构。首先,利用三维李代数S O(3)上的孤立子可积系,从它的扩展的谱矩阵和扩展的零曲率方程得到双可积耦合和三可积耦合。然后由迹恒等式得到双可积耦合和三可积耦合相应的Hamilton结构。其次,利用六维李代数S O(4)上的的孤立子可积系,从它的扩展的谱矩阵和扩展的零曲率方程得到双可积耦合和三可积耦合。然后由迹恒等式得到双可积耦合和三可积耦合相应的Hamilton结构。