论文部分内容阅读
由于气候、下垫面、人类活动等一系列因素的影响,径流序列往往具有随机性、偏态性及非线性等特征,及时准确的径流预报对水资源配置管理、水库调度决策等工作具有十分重要的实际意义与应用价值。渭河是黄河第一大支流,渭河流域以占陕西省18%的水资源量支撑着省内56%的耕地、72%的灌溉面积以及75%的国民生产总值,中长期径流预报可为渭河流域水资源开发利用、水利工程防洪、抗旱、发电等提供科学决策依据。因此本文考虑径流序列的变化特性,选用渭河流域林家村、魏家堡、咸阳、华县、张家山和状头6个控制性水文站月径流资料,结合Box-Cox变换(BC)、Min-Max标准化(MM)和小波分析(WD)3种径流序列处理方法,灰色关联分析(Gray)和Lasso回归2种预报因子筛选方法以及BP神经网络、投影寻踪回归和支持向量回归3种模型,建立了24种月径流预报组合模型,进行中长期径流预报研究,根据3个预报误差指标对模型进行综合评价与优选,取得以下主要结果:(1)构建BC-Lasso、BC-Gray、MM-Lasso和MM-Gray预报因子筛选方法,对于相同的径流预报模型,由6个水文站在验证期的各项评价指标可以看出,4种方法的综合预报效果由优到劣的排序为BC-Lasso>BC-Gray>MM-Lasso>MM-Gray,研究结果表明,采用Box-Cox变换对数据做正态化处理以及采用Lasso回归优选预报因子集能有效提高模型的预报效果。(2)构建基于小波分析的WD-BC-Lasso、WD-BC-Gray、WD-MM-Lasso和WD-MM-Gray预报因子筛选方法,其综合预报效果由优到劣的排序为WD-BC-Lasso>WD-BC-Gray>WD-MM-Lasso>WD-MM-Gray,基于小波分析预处理技术的筛选方法优于未进行小波分解处理的筛选方法,研究结果表明,采用小波分析对数据进行分解重构提高了模型的预报效果。(3)构建BP神经网络模型、投影寻踪回归模型和支持向量回归模型,对于相同的径流序列处理及预报因子选择方法,由6个水文站在验证期的各项评价指标可以看出,3个模型的综合预报效果由优到劣的排序为SVR>BP>PPR,研究结果表明,支持向量回归模型能够很好地实现有限样本下的全局最优解,具有良好的泛化能力。对于6个水文站的24种预报组合模型,虽然不同水文站点满足预报要求的模型及数量并不相同,但是综合对比下,基于小波分解、Box-Cox变换处理径流序列和Lasso回归筛选预报因子的支持向量回归(WD-BC-LSVR)模型在渭河流域月径流预报中表现出了良好的预报精度和稳定性,在验证期,6个水文站的MRE均小于17%,R大于0.97,Ens大于0.93,表明WD-BC-LSVR模型模拟效果优于其他模型,具有明显的优势,其中,林家村、魏家堡、咸阳、华县和张家山5站优选模型为WD-BC-LSVR模型,状头站虽未优选该模型,但其预报效果仍能满足要求,综上,WD-BC-LSVR模型为24种预报组合模型中的最优模型,可用于渭河流域月径流预报。