论文部分内容阅读
动能拦截器是为了对付战术导弹而发展起来的一种防空武器,多数采用红外成像寻的探测技术。在大气层内作战时,由于高速飞行会在拦截器头罩周围产生气动加热现象,从而会对红外成像制导系统带来严重的探测干扰。为了降低这种探测干扰的影响,本文针对末制导阶段拦截器采用前置追踪拦截方式进行研究,设计了相应的非线性滑模制导律和跟踪微分器,并进行了全航迹拦截运动仿真。前置追踪拦截方式是近几年来发展起来的一种导弹拦截技术,该技术是将拦截器导引到目标轨道的前方并和目标沿相同方向飞行,从而在目标轨道的前方拦截目标。在进行了运动分析和相应的模型简化的基础上,根据古典力学理论推导了前置追踪拦截方式拦截器和目标导弹的运动方程,建立了前置追踪拦截的数学模型。同时根据前置追踪拦截方式的工作原理,建立了拦截器前置追踪拦截方式的制导方程,并且通过对拦截条件的分析,给出了满足拦截条件的参数选择和初始条件。由于弹体气动系数变化、目标机动及外界干扰等因素的影响,拦截器和目标的三维拦截运动方程存在着复杂的非线性关系和不确定性。由于滑模变结构控制具有对干扰不敏感的特点,本文根据李亚普诺夫稳定性理论,设计了一种在有限时间内收敛的非线性变结构控制算法。同时在目标加速度未知的情况下,采用不确定性边界的自适应估计方法,设计了一种非线性自适应算法。针对所建立的前置追踪拦截运动方程,给出了有限时间收敛的非线性变结构制导律。数字仿真结果验证了非线性变结构制导律的有效性。由微分包含和齐次性理论建立起来的高阶滑模变结构控制能够有效地降低普通变结构控制的抖振现象,实现系统的连续控制,同时保持滑模控制对干扰具有鲁棒性的优点。文中以二阶滑模控制为例设计了一种具有强鲁棒性的二阶滑模控制算法。同时采用一种微分观测器对目标加速度进行观测估计,得到了一种平滑的二阶滑模控制器,从而有效地消除了二阶滑模控制中不确定项的影响。结合前置追踪拦截的拦截器和目标的运动模型设计了前置追踪拦截的二阶滑模制导律,仿真结果进一步验证了二阶滑模制导律的有效性和优越性。为了实现前置追踪拦截过程中的视线角和视线角速度的跟踪观测,本文对跟踪微分器进行了设计。非线性滑模控制是跟踪微分器设计的一个重要方法,尤其是高阶滑模具有抖振弱、强鲁棒性等特点而得到了广泛应用。为了提高跟踪微分器的鲁棒性,本文在深入分析非线性滑模跟踪微分器的基础上,利用李亚普诺夫稳定性定理提出了一种二阶滑模非线性跟踪微分器,并在此基础上进一步提出了降低了二阶滑模跟踪微分器微分输出抖动的方法。该跟踪微分器综合了线性跟踪微分器和非线性跟踪微分器的优点,可实现任意信号的跟踪和微分,并且结构简单、易于实现。拦截器的姿态控制系统是一个多输入多输出的非线性系统,文中对拦截器的姿态控制方法进行了研究,针对利用喷气控制的拦截器设计了一种姿态稳定的变结构控制算法。由于描述导弹的空间运动方程组由动力学方程、运动学方程、质量变化方程、几何方程和控制关系方程等组成。因此,本文在导弹刚体运动模型、空气动力、质量变化、目标运动以及轨控和姿控发动机开关控制的分析基础之上,采用非线性变结构制导律和变结构姿态控制算法,根据导弹的实际运行情况进行了前置追踪拦截方式的全航迹拦截数字仿真,从而验证了拦截运动模型、制导律和姿态控制算法的正确性。