【摘 要】
:
有机太阳能电池由于其成本低廉,质量轻,具有柔性,适用于溶液法大规模生产等优势,有望成为最具前景的能源获取技术,为可穿戴电子设备,5G基站,和建筑光伏一体化等先进科技提供能量供给方案。目前,得益于新型有机活性材料的快速发展,特别是非富勒烯电子受体,单节有机太阳能电池可实现的最佳光电转换效率已经突破18%。然而,由于有机半导体材料较低的结晶性及有限的激子扩散长度,有机太阳能电池器件内高效的光电转换过程
论文部分内容阅读
有机太阳能电池由于其成本低廉,质量轻,具有柔性,适用于溶液法大规模生产等优势,有望成为最具前景的能源获取技术,为可穿戴电子设备,5G基站,和建筑光伏一体化等先进科技提供能量供给方案。目前,得益于新型有机活性材料的快速发展,特别是非富勒烯电子受体,单节有机太阳能电池可实现的最佳光电转换效率已经突破18%。然而,由于有机半导体材料较低的结晶性及有限的激子扩散长度,有机太阳能电池器件内高效的光电转换过程高度依赖于活性层的微纳形貌,如合适的给受体相分离尺度以促进激子解离,紧密的分子排布以利于电荷传输。在本文中,我们制备了一系列基于非富勒烯电子受体的二元及三元本体异质结有机太阳能电池器件,探究了活性层组分和成膜环境对活性层内分子排布有序性、聚集态结构以及对有机太阳能电池器件光伏性能的影响。主要的研究内容和结论如下:(1)通过将非富勒烯电子受体IT-M作为第三组分引入PBDB-T:m-INPOIC二元光伏体系,制备了最佳光电转换效率达13.9%的三元有机太阳能电池器件。PBDB-T:m-INPOIC共混薄膜内展现出了适合电荷分离的理想相分离尺寸,但并不利于电荷传输。通过活性层形貌研究发现,添加适量的IT-M后,给受体的相区尺寸明显增大,聚合物给体PBDB-T的分子间有序排布也得到了增强,并形成了有利于电荷传输的双连续网络结构。最终由于开路电压,短路电流和填充因子的同时提升,器件的光伏性能从二元的12.8%提高到了三元的13.9%。(2)活性层内分子的有序性对器件性能至关重要。然而,在成膜过程中聚合物给体和非富勒烯受体同时进行的有序化过程通常会相互干扰,导致结构有序性受限。通过在热基底上涂膜,抑制了具有温度依赖聚集特性的PBDB-T聚合物给体的有序性,从而减小对受体分子m-INPOIC的扩散限制,促进了受体分子的堆积。然后再对活性层薄膜进行热退火后处理以促进PBDB-T分子进一步有序化。这一热场诱导聚集策略促使活性层薄膜内分子聚集和相分离的平衡,有效促进了给受体界面处的激子解离,增强和平衡了载流子迁移率,从而使PBDBT:m-INPOIC二元器件的效率提升至13.9%。
其他文献
近年来,可穿戴电子、无源射频天线以及物联网应用的蓬勃发展,不断对低成本、高灵活性和环境友好的生产技术提出需求。而印刷电子由于符合这一发展需求,得以迅速兴起。在印刷电子领域,油墨大多由一些有机物或高分子材料组成,因此一些印刷的电子器件性能往往受限于油墨组成。研究表明,二维材料因其优异的特性在印刷电子领域极具吸引力,各种二维材料开始在印刷电子领域崭露头角。在电子电力系统中,电介质电容器是一种常见的电力
目前国内外钢渣的综合利用已经取得了长足的进步并积累了一定的成效,但依旧还存在一些问题。就钢渣安定性而言,目前尚需进一步探明影响钢渣安定性的因素及其影响大小,同时也需要建立一种快速安全的评价方法用于评价钢渣的安定性问题;就钢渣浸出特性而言,目前因缺少系统全面的对于钢渣浸出液中离子浓度的分析,而尚不能明确指导堆存过程中钢渣对土壤环境影响的评价;并且安定性与浸出特性是否有关联性也有待进一步明晰。基于此,
纳米二氧化钛(Ti O2)因其本身具有对环境友好、低廉的成本、良好的结构稳定性等优点因此得到了非常广泛的研究和应用,特别是在光催化领域有重要的研究价值。但是二氧化钛存在光生载流子分离、传输效率低,以及复合几率高的问题,因此在一定程度上限制了其光催化性能的提升。缺陷工程、介孔结构构筑工程被认为是能够有效提升Ti O2载流子分离传输效率的方法之一。同时,研究缺陷介孔的协同作用对提高Ti O2光催化性能
介电材料一直是材料领域的热门研究材料之一。但是由于传统的介电材料的研究方式都是通过大量的实验观察数据完成的,对于当今信息爆炸的时代以及智能化高速发展的时代已经跟不上脚步。利用第一性原理计算能够不断完善介电材料的发现和设计,但是研发周期依旧过长。因此探寻新的研究办法来加快介电材料的研究有重要的意义。新兴的机器学习方法在当前的材料计算科学中取得了飞速的发展,并已成为一种流行的学习工具。为解决前面所提到
随着科技的不断进步和经济的高速发展,能源短缺和环境破坏问题变得越来越突出。而甲烷二氧化碳重整反应(DRM)可以将甲烷和二氧化碳转化成CO和H2两种可供工业使用的合成气,使其不仅能有效的利用天然气,而且能减少二氧化碳排放量,从而缓解温室效应的压力,因此受到了国内外研究者的广泛关注。据已有报道,贵金属具有良好的活性和抗积碳性能,但由于贵金属价格昂贵,无法大规模投入使用。为了克服这一障碍,常用的策略便是
由于热拌沥青混合料在生产和路面施工过程具有高能耗、重污染的特点,道路行业转而对温拌技术进行了大量的研究与应用。本文在研究温拌阻燃沥青/混合料的性能基础上,系统研究温拌阻燃沥青路面建造过程的环境影响,比较热拌沥青混合料与温拌阻燃沥青混合料在整个路面LCA各个阶段中的能源消耗及环境排放之间的差异,分析相应的高能耗及高排放源头,为后续沥青路面节能环保建设提供积极的改进措施和借鉴意义。通过前期的实验室阶段
迄今为止,用于氧还原反应(ORR)和析氢反应(HER)的最有效的催化剂仍然是贵金属铂(Pt)基催化剂。铂碳(Pt/C)因其中含有大量的贵金属铂而价格高昂,在恶劣条件下没有足够的稳定性,且Pt的储量本就不足,严重限制了其大规模使用。为了促进PEMFC的工业化,降低Pt的用量和提高Pt基催化剂的稳定性是当务之急。长期以来,为减少Pt的含量,研究者们一直致力于制备高效的Pt基催化剂,包括与非贵金属形成合
金属有机框架材料(Metal-Organic Frameworks,MOFs)是由无机金属节点及有机配体通过化学强度高的配位相互作用所形成的一种新型的多孔晶体材料,具有结构规则性和有序的孔隙度。其中,一类特殊的功能-微纳米中空材料,是一种具有明确边界和内部空间或空隙的多孔材料。它的结构特征使其具有低密度、高比表面积,能够暴露更多的活性位点,电荷传输距离短、提升反应传质扩散速率以及具有高容量等特点,
随着航空航天工业和高超技术的快速进步和发展,可瓷化聚合物基复合材料因其良好的耐火性和阻燃性被广泛的应用于热防护相关领域。通过在三元乙丙橡胶(EPDM)基体中添加大量的陶瓷填料可以明显提高复合材料的烧蚀性能,但是必然会导致密度和导热系数的提高,成本也会大幅度增加,同时基体材料与金属等材料的粘接性较差。为了改善复合材料的隔热和粘接性能,本文主要制备和研究了一种复合结构设计的EPDM烧蚀材料,这种烧蚀材
石墨烯是一种由单层碳原子堆积呈六边形蜂窝状晶格的二维碳纳米材料。由于石墨烯具有无与伦比的机械、电学、热学等性能以及在光电器件、储能器件、传感器、海水淡化、生物医学等众多领域的应用潜力,因而可持续合成高质量高电导率的石墨烯片备受关注。制备石墨烯的方法层出不穷,目前主要有两类方法:物理法和化学法。物理法包括机械剥离法、液相或气相直接剥离法、高温碳重排法等,化学法包括Si C外延生长法、化学氧化还原法、