【摘 要】
:
聚合物特有的高黏弹性,使得其在加工过程中,会受到较大的剪切和拉伸应力,在诸如棒材、管材、方型材等挤出制品的挤出过程中,熔体会出现挤出胀大、变形、表面质量粗糙等问题。在电线的包覆挤出中,则主要表现为包覆质量粗糙、外观不光亮及芯线外露等问题。这些问题大多是由聚合物熔体与口模壁面之间的粘附力过大导致的,气辅挤出技术是减小熔体与口模壁面之间黏度摩擦的有效手段之一。论文将气辅挤出技术运用于电线包覆挤出中,其
论文部分内容阅读
聚合物特有的高黏弹性,使得其在加工过程中,会受到较大的剪切和拉伸应力,在诸如棒材、管材、方型材等挤出制品的挤出过程中,熔体会出现挤出胀大、变形、表面质量粗糙等问题。在电线的包覆挤出中,则主要表现为包覆质量粗糙、外观不光亮及芯线外露等问题。这些问题大多是由聚合物熔体与口模壁面之间的粘附力过大导致的,气辅挤出技术是减小熔体与口模壁面之间黏度摩擦的有效手段之一。论文将气辅挤出技术运用于电线包覆挤出中,其原理是在口模内壁与聚合物熔体之间建立一层稳定的气垫膜层,从而将口模壁面对挤出熔体的粘附摩擦阻力降低接近于零,保证了包覆质量;在芯线拖动的过程中,芯线对熔体的正摩擦力大于口模壁面对熔体的负摩擦力,避免了熔体脱离芯线的芯线外露现象。研究拟以2.5 mm2的电线为实例,用数值模拟的方法对包覆气辅挤出过程进行数值模拟与分析,主要工作有以下几点:(1)采用PTT本构方程建立了电线包覆气辅挤出的有限元分析模型,对比分析电线包覆气辅挤出与传统挤出过程,主要对压力场、速度场和剪切应力场进行了分析。研究表明:相对于传统挤出,电线包覆气辅挤出可降低熔体的口模压降,从而减小能量消耗,可减小熔体的径向速度,可减小包覆熔体表面的剪切应力,从而改善电线的包覆质量。(2)对电线包覆气辅挤出中的工艺参数、物性参数和口模尺寸进行了分析。研究表明:当芯线的拖动速度与口模内熔体的平均流速相等时,熔体刚好充满气辅段,电线包覆气辅挤出对熔体口模压降的降低、径向速度的减小、剪切应力的降低都有显著影响。对物性参数的研究得出:熔体的松弛时间越大,熔体黏度越小,或零剪切黏度中黏性的分量比例越小,熔体口模压降越低。对口模尺寸的研究得出:对于规格为2.5 mm~2的电线,气辅段长度应大于7.5 mm,包覆厚度应大于1.4 mm小于1.8 mm,恰好符合标准的包覆厚度。根据口模尺寸的研究,对电线包覆气辅挤出口模进行了合理的设计。(3)采用Navier’s模型对芯线滑移情况下的气辅挤出进行了研究,分析了滑移系数和芯线拖动速度两种影响因素,并与传统挤出进行对比,研究表明:气辅挤出技术能够防止电线包覆挤出中的芯线滑移现象,进而消除由芯线滑移引起的包覆熔体的挤出胀大,且熔体的口模压降和剪切应力都能被减小,即使增大生产效率,气辅挤出仍能达到此效果。
其他文献
随着全球对新能源汽车的研发和对环境保护的重视,近年来电动汽车得到前所未有的发展,而动力电池组作为纯电动汽车唯一的能源供给方,其安全性能直接影响电动汽车在使用中的安全和性能表现。当前电动汽车动力电池组主要为锂离子电池组,而锂电池性能受温度影响极大,当锂电池温度过高时,锂电池的电解液传送速度和电极的反应速率将加快,从而破坏锂电池内部正常的化学反应平衡,产生一些不利的副反应。尤其当锂电池的温度超过45℃
有机太阳电池(OSC)是一种通过有效地将光能有效转换为电能的既定方法和可选方法。基于溶液处理的有机光伏(OPV)由于许多明显的优势而在科学界引起关注,例如重量轻、转移方便、柔性穿戴、半透明、彩色模块以及可快速的卷对卷制造。迄今为止,OPV的能量转换效率(PCE)已超过18%。在二元体系中加入第三组分制备三元有机太阳电池是一种提高太阳电池光电转换效率的有效方式,但大多数三元有机太阳电池是通过简单地将
有机太阳能电池具有制备成本低、质量轻、易于制作等优势,引起了人们的广泛关注。目前,开发优秀的活性层材料,进一步提高光电转化效率是该领域的研究焦点。吡咯并吡咯二酮(dicyanomethylidene,DPP)及其衍生物具有较宽的吸收范围、可调节的前沿轨道能级和良好的热稳定性,是一种优秀的半导体材料。本研究基于吡咯并吡咯二酮结构单元,构筑了一系列新型的有机小分子受体材料,并对其光学性质、电化学性质、
幼儿时期的阅读习惯培养不仅可以丰富幼儿的童年时光,同时也可以对幼儿的未来发展奠定良好的基础。绘本阅读作为当下幼儿综合能力培养的重要手段和途径,既可以增强幼儿的逻辑思维能力、语言表达能力,同时对幼儿的情感表达、习惯养成也具有积极影响。所以,幼儿阶段如何有效利用绘本阅读来增强幼儿阅读兴趣是教师与家长应该共同解决的教育问题。
资源枯竭与环境污染是人类当前发展面临的两大困境,电动汽车作为新能源汽车是解决当前困境的关键之一。动力电池是电动汽车的能量来源,在众多动力电池中,锂离子电池具有能量密度高、质量轻、无污染等优点而广泛应用于电动汽车。但锂电池的工作性能和使用寿命受温度影响很大,过高或过低的温度都会导致锂电池的充放电容量减少、使用寿命缩短,甚至引发安全事故。因此为保证锂离子电池在适宜的温度范围内安全高效地工作,锂电池热管
可再生能源作为化石燃料替代品的需求日益增长,加速了有机太阳能电池(OSC)的出现。在这个便携式和可穿戴电子设备的时代,有机太阳能电池尤其表现出质量轻、半透明、机械柔性和低成本的可加工制造等优势。近十年来,随着高效共轭活性层材料,器件结构以及界面缓冲层材料的发展,有机太阳能电池发展迅速并且光电转换效率(PCE)突破了18%。尽管性能有了令人惊喜的增长,甚至超过了基准效率15%的商业化门槛,但是仍然有
偏航刹车装置作为偏航系统的主要执行机构,其制动性能的好坏直接影响到整个风电机组的正常运行。风电机组在极端气候和频繁的偏航下,偏航刹车装置容易造成强度破坏以及疲劳破坏。为此,开展对偏航刹车装置的强度分析以及疲劳分析具有重要的意义。主要的研究内容如下:(1)讨论了风电偏航系统以及制动系统的基本工作原理,给出了偏航刹车装置的安装方式以及安装位置,结合风电机组的实际运行状态,分析偏航系统的传力特性以及刹车
作为第三代太阳电池中的翘楚,有机太阳电池和无机钙钛矿太阳电池由于其简易的湿法加工、低廉的加工成本以及兼容柔性可穿戴设备应用的特点,受到众多研究者的密切关注。然而,实验室常使用的旋涂制备工艺,对于新型太阳电池走向商业应用的大面积化印刷制备过程却是不兼容的。究其原因,这是由于太阳电池在小面积旋涂与大面积印刷过程中光敏层的结晶行为的差异性造成的。为了进一步探究太阳电池印刷过程的结晶行为与光电性能之间的构
电动汽车市场进入高速成长期,随着电动汽车数量的不断增加,其充电负荷将可能对电网的安全运行产生一定的负面影响。因此有必要对电动汽车充电负荷进行预测研究,而电动汽车在日常使用过程中受环境温度影响较大,导致其充电负荷发生显著变化。而且当一定规模的电动汽车在电网原始负荷高峰开始充电时,系统负荷曲线会出现“峰上加峰”的情况,对系统设备的安全运行造成不利影响。本文提出一种考虑环境温度影响的电动汽车充电负荷预测
锂离子电池是一种具有高能量密度、长循环寿命以及环保等优点的能量存储设备,目前石墨已经被推广为商业化锂离子电池的负极材料,尽管其循环稳定性能优异,但其理论比容量只有372 m Ah g-1,无法满足电动车和消费类电子产品对高能量密度锂离子电池的需求。由于氧化亚硅(Si Ox,0