【摘 要】
:
2,2,4,4-四甲基-1,3-环丁二醇(CBDO)是制备高性能聚酯的重要二元醇单体,2,2,4,4-四甲基-1,3-环丁二酮(CBDK)加氢是CBDO工业化生产过程中的关键步骤。论文以Ru/C催化剂催化的CBDK液相加氢反应为研究对象,通过实验优化了加氢工艺条件,考察了反应动力学规律,并对滴流床加氢反应器进行了设计优化。论文的主要工作包括以下三个方面:使用搅拌釜式反应器研究催化剂浓度、反应压力和
论文部分内容阅读
2,2,4,4-四甲基-1,3-环丁二醇(CBDO)是制备高性能聚酯的重要二元醇单体,2,2,4,4-四甲基-1,3-环丁二酮(CBDK)加氢是CBDO工业化生产过程中的关键步骤。论文以Ru/C催化剂催化的CBDK液相加氢反应为研究对象,通过实验优化了加氢工艺条件,考察了反应动力学规律,并对滴流床加氢反应器进行了设计优化。论文的主要工作包括以下三个方面:使用搅拌釜式反应器研究催化剂浓度、反应压力和反应温度对CBDK加氢过程的影响,优化工艺条件。结果表明,在150~190℃,2~5 Mpa的操作范围内,副产物收率小于1%,副产物主要为加氢过程中的开环产物。因羰基与催化剂金属之间的σ-π配位键,CBDK、CBKO(中间产物)和CBDO三者在催化剂上竞争吸附,吸附平衡常数分别为951.9 L/mol、280.1 L/mol、60.0 L/mol。实验数据拟合得到的LHHW型动力学模型能够较好描述CBDK加氢反应过程,两步加氢主反应的活化能分别为34.7 kJ/mol 和 47.9 kJ/mol。借助小试滴流床反应器探究成型Ru/C催化剂催化的CBDK加氢反应规律。考察了反应温度、反应压力、质量空速及长周期运行对加氢反应的影响,并对滴流床上的表观反应动力学进行参数回归。基于欧拉两相流模型,建立了一种耦合孔隙率分布、相间传质及润湿效率的滴流床反应器模型,模拟计算结果表明壁面效应使CBDO收率下降5.07%,壁面区域液体流速高于均值,反应滞后于中心区域;模拟结果与实验数据吻合良好,证明了模型的准确性。将建立的滴流床模型与能量方程耦合,对年产1000吨CBDO的中试规模CBDK加氢滴流床反应器进行CFD模拟计算。结果表明,高长径比的反应器有着更高的产品收率及更好的控温效果,但床层压降也更高;原料配比(氢气与CBDK摩尔比)的增加有利于床层控温,但原料配比从10增加到25时,CBDO收率下降了 23.3%,床层单位压降增加了 25 kPa/m;反应器装填催化剂粒径为2~4 mm时,床层单位压降处在合理范围内。
其他文献
在语文学习任务群视域下,探索语文学科知识转化为语文核心素养的过程,讨论“整本书阅读与研讨”学习任务群,以《红楼梦》整本书阅读为例,从系统梳理、过程探究和评价促进三个方面讨论教学实践路径,即厘清课程单元中的核心知识、聚焦语文实践活动、关注学科知识理解的水平进阶。
异丁酸酐(IBAN)和异丁酸(IBA)的热裂解是制备二甲基乙烯酮(DMK)的主要方法,也是工业生产2,2,4,4-四甲基-1,3-环丁二醇(CBDO)聚酯单体的关键步骤。本文研究了 IBAN和IBA热裂解反应动力学、反应机理和IBA催化裂解反应机理,重点内容包括以下三个方面:1.在连续流动的微分反应器中进行IBAN的热裂解实验,在748K,停留时间为0.4 s,IBAN分压为10 kPa的条件下,
环境污染和能源短缺是21世纪人类面临的重要挑战,新能源电动汽车由于运行过程清洁无污染,因而得到广泛推广。作为电动汽车的关键部分,电池技术的发展也是日新月异。锂离子电池(LIBs)凭借自身能量密度高、库伦效率高、环境友好等性能优势受到电动汽车的青睐,随着高能量密度锂离子电池和快速充电技术的发展,电动汽车能够实现更长的续航里程和更短的充电时间,但同时也面临着因散热效率低而带来的电池寿命缩短以及安全问题
气液法流化床聚乙烯工艺是生产高性能聚乙烯产品的新工艺。在该工艺中,通过将烃类冷凝液以喷射雾化的方式引入气固流化床,在床层中形成浓度、温度差异化的聚合环境(气液固“云区”和气固“非云区”),能够生成分子链级别混合的高性能聚乙烯。其中,雾化液滴与在床层中穿梭运动的活性催化剂和聚乙烯活性颗粒发生碰撞、剪切作用,导致颗粒表面形成不同的持液状态。当液膜存留或包覆在颗粒表面,在流化气体和颗粒之间分别形成气液、
目的声触诊弹性成像(soundtouchelastography,STE)、声触诊弹性测量(sound touch quantify,STQ)均为目前较新的超声弹性成像技术,本课题旨在比较分析STE、STQ与4项血清纤维化指标评估慢性乙型肝炎(chronic hepatitis B,CHB)肝纤维化的诊断效能。方法1.选取符合入组标准的122例CHB患者,均行STE、STQ检查,获得肝弹性模量值(
近些年来,影响较大的突发公共卫生事件不断出现,让我们对公共卫生事件重视程度不断提高,并在预防与控制方面取得了很好的效果,但我国目前正处于社会主义初级阶段,生产力发展水平仍不发达,各类突发公共卫生事件仍时有发生,对我国人民的整体健康水平和生活质量造成了非常严重的影响。因此,为确保开展公共卫生工作更加有效,必须对公共突发事件的预防与控制进行前端强化,确保通过运用有效的应对策略,进而减少公共卫生事件的发
农村电商为乡村振兴提供了新动能、新载体,越来越多乡村搭上了“互联网电商快车”,电商给农民带来了消费和创业便利,丰富了农民的消费选择,并且通过电商培训、帮扶及平台对接实现了农民就地创业、就业,使农民的收入能稳定增加,此外农资电商改变了农民原有的销售模式,帮助农民建立了质量和品牌意识。近几年政府对电商平台的大力推广,让农产品销售信息及渠道实现了共享化,但仍存在农产品上行难、电商人才缺乏、农村电商基础薄
氢气介导的微生物无机耦合系统在CO2还原方面展现出了独特的优势和巨大的潜力,该系统可以实现CO2到多碳化合物的直接转化。无机系统将水电解为氢气和氧气,随后被氢自养型微生物原位利用将CO2转化为不同产物。但目前该系统的产物种类仍较为单一,大多为低级醇类。此外,体系在运行过程中存在生物与无机系统不匹配的问题。无机系统副产的活性氧自由基(reactiveoxygenspecies,ROS)会对微生物造成
挥发性有机物(Volatile Organic Compounds,VOCs)是大气污染物的重要前体物之一。甲苯在石油化工,涂装印染和化学制药等行业中被广泛应用,同时因其臭氧和二次有机气溶胶生成潜势较大,是一种具有代表性的污染物。近年来,生物法被国内外广泛应用于VOCs处理中,其中,甲苯经生物降解后产生的电子在细胞内的累积是影响去除效率的关键因素。微生物燃料电池(Microbial Fuel Ce
石墨相氮化碳(g-C3N4)是一种堆积层状半导体材料。近年来,由于其制备方法简便、合适的导带位置、物化性质稳定以及价格经济等优点,被认为在可见光光催化制氢领域具有很高的应用前景。然而,反应活性位点不足、电子-空穴对易复合和有限的光吸收能力等问题都严重限制了块状g-C3N4光催化制氢性能的提升。因此,通过对g-C3N4进行带隙调控的改性策略来增强其光催化活性能受到了研究者们的广泛关注。本文提出了用过