【摘 要】
:
近年来,以GPS和北斗为代表的卫星定位导航技术得到迅速发展,在工业、商业和日常生活等领域发挥了重要作用。然而,由于信号遮挡和衰减等原因,在建筑物内部和地下等室内环境或密集的楼宇之间,卫星定位技术并不能有效工作,定位结果不再准确和可靠。而同时,物联网、智慧城市和移动互联网等领域都对高精度的室内定位服务提出了多样化的需求,在室内环境下获取高精度的位置信息,成为连接网络空间与实际环境,紧密融合人与环境、
论文部分内容阅读
近年来,以GPS和北斗为代表的卫星定位导航技术得到迅速发展,在工业、商业和日常生活等领域发挥了重要作用。然而,由于信号遮挡和衰减等原因,在建筑物内部和地下等室内环境或密集的楼宇之间,卫星定位技术并不能有效工作,定位结果不再准确和可靠。而同时,物联网、智慧城市和移动互联网等领域都对高精度的室内定位服务提出了多样化的需求,在室内环境下获取高精度的位置信息,成为连接网络空间与实际环境,紧密融合人与环境、物与环境的关键。室内可见光定位技术作为一种新型的无线信号定位技术,具备了定位精度高、安全性强、抗电磁干扰、能耗成本低等诸多技术优势。室内可见光定位技术可应用于行人在典型室内环境中通过智能手机确定自身位置,并规划最优行动路线,可广泛应用于商场、超市、图书馆、博物馆等多种常见室内场景。首先,本文研究了室内可见光定位的相关理论和技术特点,在理论和已有技术的基础上再通过设计特定的滤波片图案调制光路信号,即通过图案识别的方式调制定位信号,最后基于研究组已有的室内可见光定位研究成果,研究设计了一套基于接收信号强度的定位方法和单光源成像的定位方法的室内可见光定位系统。其次,本文在研究用于室内可见光定位的多源数据融合算法时,对接收采集到的非可见光数据,即惯性导航数据等其他多源定位数据进行去噪滤波,并和可见光信号所提供的空间状态向量数据分配权重输入卡尔曼滤波器进行处理,从而获得预期的室内多源传感器融合定位数据。最后,本文结合融合定位算法研究室内行人或机器人的路径规划与导航算法,以手绘的等比例实验场景地图模型为研究目标,采用A*系列启发式搜索路径规划算法,对已知的室内环境进行全局的路径规划,并通过多源融合定位数据确定行人或机器人的实际位置,结合预设的目标位置以及实时定位当前位置,通过路径规划实时计算出最近的行进路径,为行人提供实时准确的导航服务。此外,基于智能手机定位APP平台,优化后台定位算法程序,并增加了路径规划与实时导航功能,实现了智能手机定位与导航实时结合的研究成果。
其他文献
人脸图像作为互联网时代重要的信息媒介,能够携带充分的有效信息,得益于其采集过程便捷友好,逐渐成为了主流的个体身份标识之一。根据获取人脸信息的传感器与方式的不同,人脸图像也具有多样的表现形态,通过诸如可见光摄像机、红外摄像机和人物面部素描画法等方式可得到多种模态的人脸图像。基于相同的设备或描述方式得到的人脸图像构成了同一个模态。跨模态人脸图像生成是指将输入的某种模态人脸图像转换为指定目标模态下的人脸
微波雷达生命体征感知技术将新兴的生命科学与飞速发展的微波无线通信技术相结合,极具前沿创新价值,由于具有穿透性强、探测精度高和环境适应能力极强等突出优点,是新一代生物探测及其智能分析领域的重要支撑技术,对于未来智能医疗、生物雷达、安全防护和救援等尖端技术的发展具有极其重要的作用。伴随着相控阵、微电子和片上系统技术的飞速发展,微波生命体征感知系统及芯片研究逐渐成为国内外关注的热点问题之一。因此,本文主
纸质文件数字化对于信息提取、文本内容分析和文化交流传播具有重要意义。本文针对物流仓储包裹上标签的数字化展开研究,属于特殊场景下的纸质文件数字化研究。在运输存储过程中,货物表面的标签易产生折叠、扭曲、褶皱等几何形变,同时采集人员往往手持移动设备捕捉标签图像,更是带来了采集角度不固定、光照不均匀、图像模糊等问题,使得常用的场景文本检测与识别方法难以提取标签图像中的文本信息。针对上述问题,本文面向仓储包
随着电子科学的进步和电子终端市场的不断发展,各种电子设备的数字信号传输速率不断提高,并行总线已经不能满足处理器的发展速度。想要有效提高总线的传输速度,一般有两种途径,一种是提升频率,另一种是提升处理器位宽。如果一味的提升频率,则可能会导致并行总线信号间的串扰增多,从而使得时序难以收敛;如果提高位宽,则会使信号线的数量增多,又会带来其他许多不必要的问题。基于以上问题,高速串行总线开始登上历史舞台,逐
合成孔径雷达(Synthetic Aperture Radar,SAR)船舶检测是SAR图像解译任务的重要组成部分,可在军事侦察、民事探测等任务中提供信息支持。SAR图像船舶检测的结果可作为其他解译任务的前置条件,检测结果影响整个SAR图像自动识别系统的性能。针对SAR图像船舶检测遇到的问题和深度学习模型的优点,本文提出了基于深度学习的SAR图像船舶检测。神经网络从图像数据中学习船舶目标的抽象特征
我国洪水灾害频发,严重威胁着我国人民的生命财产安全,每年造成巨大的经济损失和人口伤亡,如果可以在洪峰峰值和洪水到达时间上实现高精度的预报,提前指导灾区人民紧急避险,就可以将损失大大减少。传统的洪水预报模型涉及洪水产生的物理过程,面临着计算复杂,后期维护成本高,开发周期长等困境。即使是专业人士,在传统模型迁移到新流域后,其内部主要的十几个参数也需要较长时间的推断以及实地测量才能确定。随着计算机技术的
随着确定性网络技术的进步与发展,其应用场景不再局限于固网系统,向着动态协同工作领域不断延伸。例如在卫星节点之间搭建分布式协作系统,利用确定性网络在高速星间链路上传输实时性信息。由于卫星之间位置不断变化并且易受到外界因素的干扰,传统确定性网络技术标准TSN(Time Sensitive Networking,TSN)并不适用于新的链路场景。因此,本文以TSN关键调度技术为背景,结合实际卫星链路特性,
在无线通信领域中,携带不同模态轨道角动量(OAM)的电磁(EM)波具有特殊的模式正交性,可以显著提高数据传输效率,涡旋电磁波的这个特性使得其在大容量无线通信领域的应用具有极大的开发价值。然而,涡旋波螺旋形状的相位分布使得涡旋波具有一定的发散特性,且随着涡旋波模式的增加,涡旋波的发散角也随之增大。发散角的影响使得涡旋波在远距离传播时波前直径变大,使得接收天线的尺寸被迫增大,不利于涡旋波的接收。不仅如