论文部分内容阅读
我国炼铁资源分布具有高品位块矿资源少,国产铁精矿粉粒度细,焦炭资源日趋匮乏,对进口铁矿石依赖度大的特点,使得高炉炼铁工艺发展受到限制,而具有直接利用细矿粉,非焦炼铁和环境友好等优势的流态化直接还原炼铁技术却十分符合我国构建资源节约型环境友好型钢铁企业的要求。但多组分复杂还原性气体条件下铁氧化物的还原机制和颗粒粘结失流现象的发生是阻碍流态化直接还原炼铁技术发展的主要因素,所以实现多组分复杂还原性气体条件下的正常流化具有重要意义。
本文从原子,界面和反应器三个尺度研究多组分复杂还原性气体条件下颗粒粘结机理,并探究不同尺度之间的联系,构建跨尺度关系。通过将气固界面反应和气固流动相结合,模拟计算和实验验证相结合的研究方法,得到了还原气体分子与界面的相互作用机制,界面结构与颗粒粘结之间的内在关系,颗粒粘结对气固流动的影响。主要研究内容和研究成果如下所述:
①第一性原理密度泛函理论(DFT)计算解释了铁晶须生长的机理,Fe2+定向扩散是铁晶须生长的必要条件。CO与FeO反应释放的化学能为铁离子扩散提供驱动力,CO对颗粒表面的Fe2+所具有的强牵引力作用确定了铁晶须生长的取向。微观剩余能量变化会影响表面新生铁形貌变化,而温度,CO/H2比例都是影响微观剩余能量的重要因素。通过计算发现900℃条件下当CO/H2混合气体中CO的比例高于82.1%时,表面新生铁的形貌为晶须状。通过SEM对表面新生铁形貌的观察验证了该结论。
②分子动力学计算解释了CO/H2混合气体中CO和H2分子的竞争吸附行为。铁氧化物的表面,CO在吸附量要大于H2,CO分子吸附受表面O2-和Fe2+离子的共同作用,而H2分子吸附只受到表面O2-离子的作用。同时CO在表面的吸附能量随温度的升高而降低。通过热重实验,发现还原过程中当铁氧化物内Fe2+离子的含量高于0.57时,CO分子吸附的控制因素由O2-浓度变为Fe2+离子浓度,使得表面CO吸附量呈现先下降后上升的趋势。
③相场理论模拟了铁晶须生长的过程和颗粒周围的对流对铁晶须生长的影响。CO浓度的增加会促进铁晶须的生长速率和形核数的增加,同时减小铁晶须形核孕育时间。而对流气体速度的增加也会促进铁晶须生长速率的增加,减少形核孕育时间,但对形核数影响较小。
④通过热膨胀实验测量颗粒的新生铁表面粘度,计算得到微观铁原子表面扩散系数,分析发现铁原子表面扩散系数与温度的关系符合阿雷尼乌斯公式,CO还原铁氧化物过程中释放的化学能会降低析出的新生铁原子在表面扩散所需的活化能,且析出的新生铁原子会形成具有较高表面能的网状结构,而H2还原氧化铁过程中所吸收的化学能会增加析出的新生铁原子在表面扩散所需活化能,且析出的新生铁原子会形成具有较低表面能的桥状结构。建立了有关微观铁原子表面扩散行为的固桥力计算模型,并通过对颗粒在流化床内的受力分析预测了多组分复杂还原性气体条件下颗粒的流化区间范围。发现稳定流化区间随着添加H2摩尔分数的增加会先增加后小幅度降低。而高CO浓度,高金属化率和高温是引起粘结失流的重要原因,通过添加H2可以提高临界金属化率,从而提高直接还原铁纯度。
⑤采用耦合传质和传热的CFD-DEM模型,模拟了颗粒在流化床直接还原过程中的粘附行为。分析了气固流动、颗粒温度分布和气相组分浓度分布特性。将气固流动状态分为两部分。一种是稳定流化,另一种是不稳定流化。相对于不稳定流化,稳定流态化使颗粒的温度和气相浓度更加均匀。在稳定流化状态下,气固两相流动表现为底部进气孔附近的双环流。当金属化率达到一定值时,颗粒发生团聚,气固流动状态由稳定流化转变为不稳定流化。不稳定流化状态下存在大量的气体通道,使压降迅速下降。同时,发现添加H2会增加稳定流化时间所对应的临界金属化率。在低温条件下,添加H2会延长稳定流化时间,在高温条件下添加H2会降低稳定流化时间
⑥第一性原理密度泛函理论计算得到了CO在新生铁表面的裂解吸附路径和H2催化CO裂解反应的机理。通过热重实验测量了新生铁表面CO吸附能和CO裂解反应活化能。结果表示温度和CO/H2比例都会影响表面CO吸附能和CO裂解反应活化能。建立动力学模型预测了CO在有无H2催化下的裂解析碳速率,并通过实验验证了模型。理论计算和实验验证都说明一定范围内增加H2浓度可以有效降低CO在新生铁表面裂解反应的活化能,扩大附碳温度区间和促进表面碳壳层的形成。但过高的H2浓度和温度都不利于CO在新生铁表面的吸附过程。
本文从原子,界面和反应器三个尺度研究多组分复杂还原性气体条件下颗粒粘结机理,并探究不同尺度之间的联系,构建跨尺度关系。通过将气固界面反应和气固流动相结合,模拟计算和实验验证相结合的研究方法,得到了还原气体分子与界面的相互作用机制,界面结构与颗粒粘结之间的内在关系,颗粒粘结对气固流动的影响。主要研究内容和研究成果如下所述:
①第一性原理密度泛函理论(DFT)计算解释了铁晶须生长的机理,Fe2+定向扩散是铁晶须生长的必要条件。CO与FeO反应释放的化学能为铁离子扩散提供驱动力,CO对颗粒表面的Fe2+所具有的强牵引力作用确定了铁晶须生长的取向。微观剩余能量变化会影响表面新生铁形貌变化,而温度,CO/H2比例都是影响微观剩余能量的重要因素。通过计算发现900℃条件下当CO/H2混合气体中CO的比例高于82.1%时,表面新生铁的形貌为晶须状。通过SEM对表面新生铁形貌的观察验证了该结论。
②分子动力学计算解释了CO/H2混合气体中CO和H2分子的竞争吸附行为。铁氧化物的表面,CO在吸附量要大于H2,CO分子吸附受表面O2-和Fe2+离子的共同作用,而H2分子吸附只受到表面O2-离子的作用。同时CO在表面的吸附能量随温度的升高而降低。通过热重实验,发现还原过程中当铁氧化物内Fe2+离子的含量高于0.57时,CO分子吸附的控制因素由O2-浓度变为Fe2+离子浓度,使得表面CO吸附量呈现先下降后上升的趋势。
③相场理论模拟了铁晶须生长的过程和颗粒周围的对流对铁晶须生长的影响。CO浓度的增加会促进铁晶须的生长速率和形核数的增加,同时减小铁晶须形核孕育时间。而对流气体速度的增加也会促进铁晶须生长速率的增加,减少形核孕育时间,但对形核数影响较小。
④通过热膨胀实验测量颗粒的新生铁表面粘度,计算得到微观铁原子表面扩散系数,分析发现铁原子表面扩散系数与温度的关系符合阿雷尼乌斯公式,CO还原铁氧化物过程中释放的化学能会降低析出的新生铁原子在表面扩散所需的活化能,且析出的新生铁原子会形成具有较高表面能的网状结构,而H2还原氧化铁过程中所吸收的化学能会增加析出的新生铁原子在表面扩散所需活化能,且析出的新生铁原子会形成具有较低表面能的桥状结构。建立了有关微观铁原子表面扩散行为的固桥力计算模型,并通过对颗粒在流化床内的受力分析预测了多组分复杂还原性气体条件下颗粒的流化区间范围。发现稳定流化区间随着添加H2摩尔分数的增加会先增加后小幅度降低。而高CO浓度,高金属化率和高温是引起粘结失流的重要原因,通过添加H2可以提高临界金属化率,从而提高直接还原铁纯度。
⑤采用耦合传质和传热的CFD-DEM模型,模拟了颗粒在流化床直接还原过程中的粘附行为。分析了气固流动、颗粒温度分布和气相组分浓度分布特性。将气固流动状态分为两部分。一种是稳定流化,另一种是不稳定流化。相对于不稳定流化,稳定流态化使颗粒的温度和气相浓度更加均匀。在稳定流化状态下,气固两相流动表现为底部进气孔附近的双环流。当金属化率达到一定值时,颗粒发生团聚,气固流动状态由稳定流化转变为不稳定流化。不稳定流化状态下存在大量的气体通道,使压降迅速下降。同时,发现添加H2会增加稳定流化时间所对应的临界金属化率。在低温条件下,添加H2会延长稳定流化时间,在高温条件下添加H2会降低稳定流化时间
⑥第一性原理密度泛函理论计算得到了CO在新生铁表面的裂解吸附路径和H2催化CO裂解反应的机理。通过热重实验测量了新生铁表面CO吸附能和CO裂解反应活化能。结果表示温度和CO/H2比例都会影响表面CO吸附能和CO裂解反应活化能。建立动力学模型预测了CO在有无H2催化下的裂解析碳速率,并通过实验验证了模型。理论计算和实验验证都说明一定范围内增加H2浓度可以有效降低CO在新生铁表面裂解反应的活化能,扩大附碳温度区间和促进表面碳壳层的形成。但过高的H2浓度和温度都不利于CO在新生铁表面的吸附过程。