论文部分内容阅读
随着卫星技术的不断成熟及功能的多样化要求,微小卫星以低成本、功能扩展强等优点得到了迅速的发展。在空间中,每个微小卫星实现特定功能并通过多卫星组合实现信息共享和功能协调,完成复杂任务。微小卫星以其高性价比常用于新型任务的关键技术验证,为增强空间任务的可视性以及关键技术的验证,常在地面进行物理仿真实验,通过地面仿真系统实现关键技术指标的考核。本文源于实际工程项目,微小卫星气浮仿真转台最大有效载荷为50Kg,动量轮饱和力矩1m N·m,转台干扰力矩指标为10-5N·m量级。本文主要通过分析转台干扰力矩的主要来源以及干扰力矩的主要影响因素,在满足承载和刚度前提下得到气浮轴承的主要轴承参数和加工精度。减小转台的干扰力矩对于地面物理仿真精度以及对于精密仪器的测试精度有着重要的意义。本文主要利用数值分析以及流体仿真软件Fluent两种方法对气浮轴承的承载能力等静压特性进行分析,得到转台在满足静态特性的要求下,气浮轴承的设计参数。根据气浮轴承的静压特性设计转台的机械结构,并设计了气浮轴承涡流力矩的补偿调节装置来降低转台实际的干扰力矩,通过实验研究得到补偿前后的涡流力矩与供气压强的影响关系;针对转台微小力矩的测量,设计了两种测量方法并进行了对比分析,说明了两种方法的测量原理及优缺点;搭建了气浮转台的地面物理仿真系统,基于C++完成了转台的测试软件,对微小卫星的有效载荷进行测试,完成转台的物理仿真及控制系统的软件;进行地面物理仿真实验,并对转台的实际干扰力矩进行测量,转台实际干扰力矩为2~4×10-5N·m。此外,通过转台姿态机动,比较分析了Simulink数学仿真与实际物理仿真实验中的稳定精度,在微小干扰力矩下,实际转台的角度稳定精度优于0.05°,并对待测陀螺相对基准陀螺的精度进行了实验分析。