论文部分内容阅读
本研究利用microarray和RNA-seq等手段,对从国内外不同实验室来源的猪iPS细胞株进行了测定分析,获得了多维度的基因表达数据,并通过系统生物学整合分析深入探讨了猪iPS细胞多能性维持的分子机理。利用基因芯片初步鉴定重编程完成情况,同时与已报道建系猪iPS基因表达谱比较,探讨猪iPS细胞多能性维持的调控网络。结果表明完全重编程的iPS细胞比部分重编程的iPS细胞高表达EPCAM,该基因可作为诱导猪多能性细胞的标记物。通过比较JAK-STAT, NOTCH, TGFB1, WNT和VEGF通路相关基因在猪、人和小鼠多能性细胞中的表达情况,解析了猪多能性和自我更新维持的特性。na ve状态特异的标记基因KLF2/4/5和TBX3在猪iPS中没有上调,但primed状态的标记基因OTX2和FABP7在猪iPS中上调。同时, DLK1-DIO3相关基因在猪iPS中异常表达,这能够解释目前较少有嵌合猪产生的报道。这些结果表明目前诱导和培养体系下得到的猪iPS接近于人,而区分于小鼠多能性维持状态。利用通过RNA-seq比较了猪iPS细胞和成体细胞的基因表达谱,同时分析了不同生长因子依赖的猪iPS细胞基因表达谱的差异,这些差异基因可能为鉴定猪iPS细胞多能性维持的关键转录因子提供参考。对分析出的差异基因进行功能富集分析,从而揭示与猪多能性维持相关的重要细胞信号通路和代谢活动。分析结果表明猪iPS上调基因富集与“核糖体”,“染色质重塑”以及“细胞周期”等通路。我们的分析表明RNA剪接对于调控猪细胞的多能性具有关键作用,推算出了猪iPS细胞和成体细胞中出现的可变剪切体。我们以多能性维持核心转录因子SALL4为例说明了其可变剪切的模式,并通过RT-PCT和定量PCR进行了验证。本文最后分析了猪iPS中上调基因在猪早期胚胎发育过程中动态表达的情况。由此,建立了猪多能性维持的基因表达图谱,以上分析对于建立Na ve状态的猪iPS细胞系具有参考意义。