论文部分内容阅读
近年来,由于电化学技术在废水治理方面的优势,该技术崭露出良好的应用前景,多相催化技术在环境废水的处理方面的应用研究也越来越深入。本文将电化学与多相催化有机结合起来,以复极固定床电解槽(BPBC)为反应器,用负载金属氧化物的多相催化剂取代传统反应器的绝缘填料,构建了多相催化电解耦合体系。分别以硝基苯和苯酚为电解底物,考察了不同催化剂填料存在情况下,有机物在多相催化电解耦合体系中的降解情况。主要得出如下结论: 采用BPBC分别处理硝基苯和苯酚废水,电解硝基苯的优化条件:电解电压40 V、支持电解质Na2SO4浓度为1000 mg·L-1、pH值为10、水力停留时间45 min:硝基苯的去除率为61.4%;电解苯酚废水的优化条件:电解电压为25 V、支持电解质Na2SO4浓度为1000 mg L-1、pH值为2.5;100 mg L-1的苯酚电解45 min,去除率为42.6%;BPBC对硝基苯和苯酚的降解过程符合一级动力学模型。 多相催化电解耦合工艺处理硝基苯废水的优化工艺条件为:电解电压40 V、支持电解质Na2SO4浓度为500 mg·L-1、pH值为10、水力停留时间45 min。经过对硝基苯降解效果的评价,筛选出了实验范围内的最佳催化剂为Fe2O3/γ-Al2O3。在用催化剂Fe2O3/γ-Al2O3为填料时,硝基苯的降解过程符合一级动力学模型;硝基苯和TOC的去除率分别为75.1%和39.8%。在引入多相催化剂后,硝基苯的处理效果有了显著的提高,硝基苯和TOC的去除率分别提高了13.7%和12.6%。硝基苯电解后,出水的可生化性有了显著的提高,BOD5/CODcr,由0.06升高到0.307。 用HPLC和GC-MS对硝基苯电解出水的产物进行分析,得到的产物有苯酚、苯胺、对氨基苯酚等物质,推测硝基苯在多相催化电解耦合工艺中的降解途径为:硝基苯可由电化学氧化直接分解,也可以由电解产生的次生氧化物间接氧化分解;除电化学氧化,也存在硝基苯电化学还原,生成苯胺、对氨基苯酚等物质,产物再进一步分解直至矿化;电解过程中硝基苯部分会矿化。 多相催化电解耦合工艺处理苯酚废水的优化工艺条件为:电解电压25 V、支持电解质Na2SO4浓度为1000 mg·L-1、pH值为2.5、水力停留时间45 min。筛选出实验范围内处理苯酚的最优催化剂为Fe2O3/ZSM-5。在优化实验条件下,以催化剂Fe2O3/ZSM-5为多相催化电解耦合工艺反应器的绝缘填料,苯酚的降解过程符合一级动力学模型;多相催化电解耦合工艺处理苯酚的效果比传统的BPBC有了明显的提高,苯酚的去除率从42.6%提高到83.5%,COD的去除率从22.3%提高到43.4%,多相催化电解耦合工艺比传统的BPBC电解苯酚的COD去除效率增加了近一倍。