论文部分内容阅读
随着微/纳米技术的迅速发展,以压电陶瓷、形状记忆合金、磁致伸缩材料等智能材料构成的执行器在微定位、微位移等领域内得到广泛的应用。然而,寄生于这些智能材料中的迟滞非线性不但会降低系统的控制精度,甚至会导致系统不稳定。迟滞作为是一种非常规的非平滑的非线性,它的复杂性表现在多映射性和记忆性。另外,具有迟滞非线性的三明治系统作为一种特殊结构的迟滞非线性系统,由于前一个动态模块的限制,难以直接对迟滞进行补偿。其特有的三明治结构,加上迟滞非线性的复杂性使得经典控制理论和现代控制理论都难以对其实现有效的控制。因此本文研究了具有迟滞非线性的三明治系统的建模与控制问题。
论文的主要内容首先建立两类迟滞模型,其一,对Preisach类迟滞非线性建立了基于迟滞算子的神经网络模型。其二,对一般的迟滞非线性,通常具有速率相关特性(迟滞输出与输入信号的变化率或者频率相关),通过引入一个Duhem算子,实现了迟滞非线性的动态建模。然后针对上面两类迟滞非线性,通过引入迟滞逆算子和Duhem逆算子分别给出其相应的迟滞逆模型,应用反馈学习方法实现对迟滞非线性的补偿。最后对具有迟滞非线性的三明治系统设计控制器。其思路为:抵消前一个动态模块将其转化为一般的迟滞非线性系统,基于所建的模型,运用伪控制方案设计了神经网络自适应控制器。
在众多的迟滞模型中,Preisach模型是应用最广泛的一类模型,但是具有实现形式复杂、在线更新困难的缺点。为了克服Preisach模型的这些缺点,建立基于算子的神经网络迟滞模型。由于迟滞的不平滑和多映射性,难以采用常规方法对其建模。本文基于空间扩张的方法,提出一个迟滞算子来扩张迟滞的输入空间,在三维空间上将迟滞的多映射转化为一一映射,同时证明了输入空间的紧致性和一一映射的连续性。这样利用神经网络来逼近这个一一映射从而建立一个神经网络迟滞模型。一般迟滞非线性具有速率相关特性,因此需要进行动态迟滞建模。本文从系统的观点,提出了迟滞状态的概念,给出了迟滞非线性的状态空间表达式。通过用Duhem算子来描述迟滞状态,用神经网络来逼近迟滞状态和迟滞输出之间的映射实现了对迟滞非线性的动态建模。
与常规模型相比,本文所提出的模型的优点在于:(1)结构简单,简化了辨识算法,易于在线实现。(2)可以在线调整神经网络的权值以适应不同条件下的迟滞辨识,具有较好的灵活性和适应性。(3)基于Duhem算子的神经网络迟滞模型,能够描述迟滞的速率相关特性,实现迟滞非线性的动态建模。克服单纯采用Duhem模型难以选择参数以及静态模型的缺点。
在迟滞非线性的补偿方面,最通常的方法就是建立迟滞的逆模型,将逆模型与迟滞非线性串联来抵消迟滞对系统的不良影响。本文针对上面的两类迟滞非线性,分别给出迟滞逆模型。对Preisach类的迟滞非线性,提出一个迟滞逆算子将Preisach类迟滞逆模型的输入空间进行扩张,在三维空间上将迟滞逆的多值映射转化成一一映射,然后运用神经网络来逼近这个一一映射从而建立一个迟滞逆模型。针对一般迟滞非线性,提出一个迟滞逆状态从而给出了迟滞逆的状态空间表达式。然后对Duhem模型求逆并进行适当的变换称为Duhem逆算子。利用Duhem逆算子来描述迟滞逆状态,神经网络来逼近迟滞逆状态与迟滞逆输出之间的映射从而实现对一般迟滞逆的辨识。在逆模型的应用方面,应用反馈学习的方法来调整神经网络参数从而补偿迟滞非线性。
在具有迟滞非线性的三明治系统的控制方面,针对三明治系统特殊的结构,首先对三明治系统进行转化,利用逆系统来近似补偿前一个动态模型从而将具有迟滞非线性的三明治系统转化成一般的迟滞非线性系统。然后运用伪控制方案,基于所建立的迟滞模型设计神经网络自适应控制器。利用Lyapunov方法证明了系统的稳定性并推导出神经网络权值自适应调整律和控制律。
综上所述,论文取得以下创新成果:
1.利用基于迟滞算子的输入空间扩张的方法,建立Preisach类迟滞非线性神经网络模型。该模型结构简单,简化了辨识算法,可以在线调整神经网络的权值以适应不同条件下的迟滞辨识。利用迟滞算子进行输入空间扩张,在三维空间将迟滞非线性的多值映射转化为一一映射,为用传统的辨识方法打下了基础。克服了应用Preisach模型实现形式复杂、在线更新困难的缺点。
2.为了描述迟滞的速率相关特性,建立基于Duhem算子的动态迟滞模型。该模型实现了迟滞的动态建模,克服了Preisach模型等静态模型的缺点。
3.针对Preisach类的迟滞非线性和一般迟滞非线性,分别提出迟滞逆算子和Duhem逆算子建立了神经网络迟滞逆模型。同样利用迟滞逆算子来扩张输入空间从而将迟滞逆的多值映射转化为一一映射。运用反馈学习方法来调整逆模型的神经网络权值以补偿迟滞非线性。为迟滞非线性系统的直接逆控制、内模控制等控制方案提供了理论基础。
4.首次对具有迟滞非线性的三明治系统设计了神经网络自适应控制器。将迟滞三明治系统转化成一般的迟滞非线性系统,基于所建的迟滞模型,运用伪控制方案实现对三明治系统的控制,拓展了三明治系统的研究范围。