论文部分内容阅读
精密定位系统是指精度高和灵敏度高的定位机构,它是精密机械和精密仪器的关键部件之一。随着压电陶瓷微位移器在精密定位、微操作等方面越来越多的运用,采用压电陶瓷微位移器驱动的柔性支承微定位机构得到广泛的应用。由于压电驱动器结构紧凑、体积小、分辨率高、通常情况下几乎不发热且易于控制,已在微位移驱动与控制上获得了比较成熟的应用。但同时压电材料存在迟滞及蠕变特性,当用于微定位系统中,由于非线性迟滞的影响,定位时难以达到较高精度,因此如何克服压电材料存在的固有的非线性迟滞及蠕变特性一直是研究的热点问题之一。为减少以上不良因素的影响,更好地发挥压电陶瓷微位移器的性能,需要对这些缺陷进行深入的研究,揭示迟滞非线性的物理本质,建立相应的物理和数学模型,发展控制算法,以消除迟滞非线性的不利影响。本文研究了压电陶瓷微位移器的动态控制模型,压电陶瓷微定位系统的逻辑规则控制策略、逻辑规则控制算法,进行了逻辑规则控制算法的离线仿真和在线实验研究。本文提出了压电陶瓷微定位系统的逻辑规则控制策略,分别论述了逻辑规则控制的相关概念、术语,以及逻辑规则控制的基础-泛布尔代数理论和基于泛布尔代数理论的逻辑规则控制系统的组成,逻辑控制的原理,逻辑规则控制方法的特点以及逻辑规则控制器的实现流程;给出了运动控制系统的逻辑规则控制要求及其表征,在泛布尔代数理论的基础上,进一步提出了基于偏差相平面的逻辑规则控制算法和基于偏差相空间的逻辑规则控制算法。给出了压电陶瓷这类具有迟滞非线性特性的逻辑规则控制方案,建立了一种新的压电陶瓷微位移器的逻辑控制模型;并将基于泛布尔代数理论的逻辑规则控制算法,应用于压电陶瓷微定位系统的控制中,同时进行了离线仿真研究。在此基础上,将逻辑规则控制算法与经典的PID控制算法结合起来,提出了Rule+PI多模态分段控制。给出了一种新的压电陶瓷微位移系统的柔性驱动平台方案,描述了柔性驱动平台的结构,建立了该柔性驱动平台的力学模型,并对该柔性驱动平台进行了静态分析和动态分析;最后对柔性平台刚度进行了理论计算,最终确定了弹性圈的参数。构建了压电陶瓷微定位系统的实验平台,研制了一种新型的压电陶瓷驱动电源,设计了专用的硬件电路,并编制了压电陶瓷微定位系统的逻辑规则控制软件;给出了压电陶瓷微定位系统在逻辑规则控制器作用下的实验结果。最后将以上成果应用于非探针多通道红外近场光学显微成像测量与实验中,建立了非探针红外近场光学显微成像系统的微定位平台控制系统。该平台控制系统采用步进电机粗驱动与压电陶瓷微驱动相结合的方法,实现了在一定精度要求下的较大量程,满足了系统对码板驱动和定位的需要,并最终得到了矩阵编码测量结果。