论文部分内容阅读
近年来,米波雷达在反隐身和抗反辐射导弹方面的优势引起了雷达界的重新重视。但是,由于米波雷达波长较长,受天线尺寸的限制,雷达波束较宽,角分辨力差,在探测低仰角目标时,雷达接收回波中不仅有直达波信号,还有经地(海)面反射的多径信号,多径反射波和直达波具有很强的相关性,会对目标测高精度产生严重影响。因此,米波雷达低仰角目标探测的分辨力和精度都非常低,无法满足对多目标分辨和精确定位的需求。本文针对米波雷达在低仰角目标探测中存在的多径问题,在提升米波雷达空间探测分辨力和精度等方面进行了研究,主要工作分为以下两个方面:1、对于比较平坦的阵地,多径信号主要是镜面反射信号,漫反射功率比较小。传统阵列雷达的空间分辨率受天线孔径的限制,对位于一个波束宽度内的空间目标是不可分的,基于时空随机辐射场的微波关联成像方法具备突破天线孔径限制的高分辨能力,本文借鉴基于时空随机辐射场的成像体制并将压缩感知算法应用到米波雷达多目标探测上,提出了多径情况下基于时空随机辐射场的米波雷达多目标探测方法。首先建立多径情况下基于时空随机辐射场的米波雷达多目标探测信号模型,利用镜面反射提升时空辐射场的伪随机性,从而将多径信号由不利因素转化为有利因素,以提高目标探测的分辨力;其次,将功率较小的漫反射信号归结为辐射场随机误差,采用辐射场存在误差时的具有稳健性的压缩感知算法来进行目标重构,以达到多径情况下米波雷达超分辨探测的目的。最后通过仿真分析验证了所提方法的有效性。2、针对比较复杂的阵地,由于反射面的粗糙程度非常大,不满足瑞利准则,镜面反射和漫反射多径同时存在,表面越粗糙,雷达仰角越低,漫反射功率越占主导地位,多径信号的能量在空间形成一定的分布,此时多径服从分布源。本文分析了分布源多径信号模型,利用合成导向矢量方法推导了该模型下的感知矩阵,然后利用目标的稀疏性,将压缩感知算法应用到该信号模型的求解中,达到了利用较少的快拍数来超分辨、高精度估计目标仰角的目的,仿真结果验证了所提方法的有效性。