【摘 要】
:
捷联惯性/天文组合导航是以捷联惯性导航系统作为参考系统,以天文导航的天体测量信息作为辅助,以获取高精度导航定位参数的,高自主性、高可靠性导航系统,是卫星、深空探测器、弹道导弹等新一代飞行器的首选导航系统。为实现高精度导航定位,减小系统运行过程中的各项误差、优化信息融合算法是必不可少的过程。在此背景下,本文对主动段惯性器件误差开展了分析与研究,并对捷联惯性/天文导航关键算法进行了优化,设计完成了可有
【基金项目】
:
国家自然科学基金(61873064); 装备预先研究项目(6922002234);
论文部分内容阅读
捷联惯性/天文组合导航是以捷联惯性导航系统作为参考系统,以天文导航的天体测量信息作为辅助,以获取高精度导航定位参数的,高自主性、高可靠性导航系统,是卫星、深空探测器、弹道导弹等新一代飞行器的首选导航系统。为实现高精度导航定位,减小系统运行过程中的各项误差、优化信息融合算法是必不可少的过程。在此背景下,本文对主动段惯性器件误差开展了分析与研究,并对捷联惯性/天文导航关键算法进行了优化,设计完成了可有效估计加速度计偏置的SINS/RF-CNS组合导航系统,从而为惯性/天文组合导航在空天环境下的工程应用提供理论参考。本文首先从捷联惯导系统与基于恒星敏感器的天文导航系统出发,讨论了其基本工作原理与解算方式,以发射点惯性系为导航坐标系,分析了组合导航系统模式,建立了捷联惯性/天文组合导航状态模型等。针对主动段的高动态环境,任一误差源的变动都会极大的影响导航精度,传统的误差模型不能完全反映其误差情况。本文通过对弹体受力与环境变化的复杂情况分析,考虑传感器误差、安装误差、标度因数误差、杆臂误差及二次项误差、圆锥运动与线振动等因素,建立了一种针对主动段高动态环境下惯性器件的多源误差模型。通过构建多源误差仿真实验分析平台进行了仿真实验,分析了多源误差在系统误差中的占比,以及不同误差源在系统中的耦合情况,讨论了不同误差源对弹体横向漂移与纵向漂移的影响。传统的基于姿态的SINS/CNS组合导航系统只能有效估计陀螺仪漂移,而对于加速度计偏置无能为力,从而影响系统最终定位精度。本文基于星光折射间接敏感地平方式,提出了一种改进的SINS/RF-CNS组合导航方式。首先通过三角形算法,实现了连续的星图模拟与星图匹配识别;其次推导了折射视高度与导弹位置的关系,再辅助以弹体飞行的运动学约束,建立了新的组合导航非线性模型;研究了对应的观测噪声模型,实现对应的量测噪声更新,通过实验分析了折射光线的折射高度、折射角误差等对量测信息的影响,以提高系统位置定位精度与系统鲁棒性。由于工程实验条件的限制,搭建了系统的实验仿真平台,以导弹为载体建立了仿真模型并完成了组合导航仿真实验,对比分析了不同初始失准角误差条件下,传统组合导航方式与基于EKF、UKF算法的SINS/RFCNS组合导航方式分别达到的系统定位效果。实验结果证实,所提出的SINS/RF-CNS组合导航方式对于估计加速度计偏置、提高位置定位精度有明显效果,三轴位置误差相较于传统方式分别提高了84.27%、89.53%与85.02%。
其他文献
本文以吲哚菁类为报告基团,经缩合、取代、酰化等反应合成了新型吲哚菁类荧光探针A-1、N-1、M-1和Q-1。测试表明,探针A-1、N-1、M-1和Q-1对生物硫醇均有较强的紫外吸收和荧光光谱响应,在Hep G2细胞中,它们对内源性/外源性生物硫醇的测试,也取得了较好的结果:((1)其中,探针Q-1的最大紫外吸收波长为620 nm,且均对生物硫醇表现出比率型荧光响应;(2)在生理条件下,具有良好的稳
水下重力实时测量与处理技术是一种能在水下载体航行过程中实时测量重力异常值并对其进行处理的技术,广泛应用于地质勘探、辅助导航等领域。本文以水下重力测量为应用背景,结合重力辅助惯性导航的实际需求,设计并实现了水下重力实时测量与处理平台。论文的主要研究内容和成果如下:分析了平台硬件架构的设计目标,给出了硬件架构的设计方案,以FPGA芯片为平台数据预处理与分发中心,OMAP_L138芯片为平台数据解算中心
纳米纤维由于极高比表面积,且具有极强的与其他物质的互相渗透力,并能够有效地模仿细胞外基质,为细胞提供良好的三维生长空间,有利于细胞的粘附和增殖,多数细胞易于黏附在直径远小于其自身的纳米纤维表面生长,此外,纳米纤维具有良好的可降解性和生物相容性,因此在药物控释载体、临床修复和生物组织工程支架等方面有着巨大的应用市场。本论文的目的是采用左旋聚乳酸(poly-L-lactic acid,PLLA)纳米纤
纹理是反映物体表面状态的重要信息,通过触觉可以感知和操控物体,在人机交互领域,触觉交互可以使操作者被动或者主动地感受到物体的外形、粗糙度等纹理信息,研究纹理的力触觉再现可以弥补在交互过程中触觉信息的缺失。纹理触觉传感器采集纹理表面信号,所采信号用于对物体表面信号的力触觉再现。纹理力触觉再现技术可以将物体表面纹理通过触觉方式再现在远端,在遥操作机器人、多模态感知技术、虚拟现实领域都有宽广的前景。本文
在目标检测系统中引入人工标注的环节,利用人的经验以及认知能力,有望突破传统人工智能技术在检测不确定目标、遮挡目标、难以描述目标时的瓶颈,但在一定程度上也限制了检测的效率。注视相关电位(Fixation Related Potential,FRP)是一种反映了人脑对由注视事件诱发感兴趣认知行为处理过程的脑电成分,并且由感兴趣与非感兴趣目标诱发的FRP时域波形具有明显的区别,因此利用基于FRP的脑电感
细胞支架是细胞体外培养时不可或缺的重要材料。细胞支架可以为细胞生长营造仿生环境,模仿天然细胞外基质的性质,诱导细胞的各项行为。因此,细胞支架需要具备生物可降解性,良好的生物相容性和细胞亲和性。在此基础上,还需具备一定的细胞外基质的特性,例如一定的力学性能,可调节的化学性能等。目前报道的文献中,细胞支架存在着性能单一,静态,材料降解速度过快或过慢等问题。本论文基于二硫键光动态性,制备了表面理化性质可
航空对地观测系统中子天线处高精度的导航信息可借助传递对准来实现。不同于船载、车载等系统,机载分布式惯性测量系统中载机工作环境复杂、结构变形严重,其传递对准技术研究涉及到的问题也更具独特性,本文以此为背景,研究了机载分布式惯性测量系统传递对准技术。论文首先对系统中涉及到的机翼挠曲变形建模方法、载机运动与挠曲变形解耦合、挠曲变形误差补偿、杆臂效应误差补偿以及多节点全局信息融合五个关键技术进行分析,并给
随着科技社会的不断发展,同时定位与地图构建(Simultaneous Localization and Mapping,SLAM)技术成为了热门研究话题。目前,单机器人SLAM算法在学界取得了诸多进展,并逐渐应用于生产生活中,但仍存在精度与耗时矛盾、动态稳定性差等不足;进一步由于任务场景不断复杂化与扩大化,单机器人SLAM常无法满足任务需求,协作SLAM应运而生。与单机器人SLAM相比,协作SLA
近年来基于车路协同的智能驾驶技术逐渐成为智慧交通领域的研究热点,而对交通环境信息的可靠感知是各类高级驾驶功能有效实现的重要基础,其中车载端的感知功能已有较多研究,而路侧端相关的感知功能则少有成型的研究成果。行人作为城市交通场景中关键的组成部分,其位置等信息的准确采集与感知常受到众多研究人员的广泛关注。目前利用机器视觉信息对图像数据中的行人目标进行检测的方式大致可以分为两种类型:基于人工特征的传统机
通过车辆运动学模型和车轮力可以推算出车辆在任意时刻的运动状态。车轮力传感器能够测量车轮的受力情况,为汽车的测试和安全性能评估提供重要参考依据,对智能车辆的运行状态和控制起到一定的指导意义。但是,由于车轮力传感器与车轮固定连接,车轮力测量坐标系与解算坐标系不一致,从而存在测量结果与车轮姿态(旋转、偏转、倾侧)相互耦合的问题。而目前车轮力传感器采用的是光电编码器,只能测量车轮的旋转角度,同时车轮的偏转