论文部分内容阅读
发动机机匣、整体叶轮、气波制冷装备转毂等曲面薄壁构件,是航空航天、能源动力等领域高端装备的关键件,这些结构件的某些部位或其整体多采用侧铣加工方式,对性能和加工表面质量的要求极其苛刻。然而,由于这些构件壁薄、形状复杂、材料去除量大,不仅自身刚性较弱,且加工过程中刚度时变、刀具悬伸大,若加工参数选取不当,极易诱发表面质量退化、颤振失稳等问题,难以满足加工要求。因此,构建加工工艺系统的动力学模型,提出稳定性极限的精确预报方法,寻求合理的工艺参数组合,对实现曲面薄壁构件的高质高效加工具有极为重要的意义。为此,本文以曲面薄壁构件的侧铣加工为研究对象,开展了考虑刀具与工件柔性的加工动力学建模与稳定性预报研究,深入揭示了刀具与工件的激励响应机制与动态交互作用机理,为气波制冷装备转毂空间曲折流道的高质高效加工提供了重要的理论依据与技术支持。论文的主要研究内容如下:(1)建立了多点接触的五轴侧铣动态切削力模型。首先,给出了五轴侧铣加工的路径表达以及刀具坐标系与工件坐标系间的转换关系,确定了齿间角和螺旋角同时变化下不同切削微元的位置角。然后,提出了基于实体裁剪技术的刀具-工件接触域提取新方法,计算了考虑刀具跳动效应的瞬时未变形切厚,给出了基于最小静态瞬时未变形切厚原则的多重再生索引确定方法。在此基础上,进一步建立了多点接触的动态切削力模型,并给出了动态切削力模型在模态空间下的表达形式。最后,提出了并行标定变齿间角/螺旋角刀具切削力系数和刀具跳动参数的方法。所建立的动态切削力模型为侧铣加工的精确动力学建模提供了力学基础。(2)提出了针对细长刀具的模态测试与参数辨识方法。基于模态分析理论,提出了一种跨轴跨点模态测试方法,解决了常规测试方法由于忽略结构跨轴和跨点模态对细长刀具造成的动力学参数辨识失准问题。提出了与新模态测试方法配套的动力学参数辨识方法,给出了多频响函数的分组参数辨识策略,进而确定了整个刀具结构的动力学参数。测试与辨识实验结果表明:通过所提方法辨识出了具有主振动方向属性的刀具动力学参数,弥补了常规方法在振型向量辨识精度方面的不足。所提方法为考虑跨轴跨点模态耦合效应的刀具动力学方程提供了准确可靠的动力学参数。(3)建立了考虑刀具与工件柔性的侧铣加工动力学模型。针对侧铣工况,建立了考虑跨轴和跨点模态耦合效应的刀具动力学方程,并给出了与刀具动力学方程相匹配的参数矩阵拼装方法。仿真与实验结果表明:考虑跨轴和跨点模态耦合效应的动力学模型使得稳定性边界的预报精度显著提升。针对薄壁结构件侧铣工况,综合考虑切削过程中的材料去除效应和静力诱使变形影响等,建立了工件柔性下和刀具与工件双柔性下的工件动力学方程。考虑实际材料去除效应,给出了切削过程工件动力学参数的快速提取方法,考虑静力诱使变形影响,提出了刀具与工件实际啮合角边界的迭代求解方法。仿真和实验结果表明:考虑静力诱使变形影响能够提升切削力的预报精度,使得动力学模型所预报的稳定性边界与实验结果更加吻合,特别是对于壁厚越薄的薄壁结构件。(4)提出了具有高收敛率的铣削稳定性预报方法。面向单时滞铣削系统,提出了基于精细时程积分的二阶半离散法。该方法采用二阶牛顿插值公式逼近Duhamel积分的时滞项,获得了对系统状态响应更精确的逼近;对于逼近过程中所产生的大量指数矩阵及其与多项式函数乘积的积分,给出了基于精细时程积分算法的高效求解策略。面向多时滞铣削系统,提出了基于精细时程积分的多步Adams法。该方法采用多步Adams公式分别对系统状态响应的动态和静态组量进行精确逼近,具备同步预报系统动态位移及表面位置误差的能力。逼近过程中所产生的大量指数矩阵及其与多项式函数乘积的积分同样通过精细时程积分算法实现高效求解。标准算例仿真结果表明:二阶半离散法与多步Adams法与国际通用的主流方法相比均具有显著更高的收敛性,在较小的离散数下即可获得较高的计算精度。在计算效率方面,二阶半离散法相比一阶半离散法提升65%以上,不同步数下的多步Adams法均高于不同阶数下的全离散法,且随步数增加其计算时间增长的趋势较缓。(5)进行了曲面薄壁构件的加工验证。将本文提出的侧铣加工动力学模型及稳定性预报方法应用于气波装备转毂的侧铣加工中,形成了转毂上环状均布的空间曲折流道的加工工艺路线。设计了具有刚度增强功能的定位及装夹方案,划分了涉及应用变齿间角刀具的加工阶段并生成了各加工阶段下的侧铣刀具路径,分析了变齿间角刀具带来的抑振作用效果,给出了依据稳定性极限图的侧铣加工参数优选策略。仿真结果表明:在某些转速范围内,使用变齿间角刀具可将临界径向切深提升一倍以上。加工实验结果表明:该工艺路线有效避免并抑制了加工颤振,实现了气波制冷机转毂薄壁流道的高效稳定加工,验证了本文所提模型与方法在实际工程应用中的可行性。