论文部分内容阅读
钙钛矿材料以优异的光吸收能力、小激子结合能及高载流子迁移率等优点活跃在研究者的视野中。以钙钛矿材料为核心的光伏电池由于效率高、制备简单及可柔性应用等特点成为非常有前景的新型太阳能电池。然而由于钙钛矿结晶性难控制、电子传输层缺陷多及界面复合严重等问题,限制了其大规模应用与发展。本论文围绕光生电荷的产生与分离这一关键问题,以电子传输层材料优化、钙钛矿晶体质量的提高及界面调控为出发点,实现了钙钛矿电池性能的提升。首先,筛选了具有合适离子半径的金属元素,对电子传输层材料进行掺杂,实现了缺陷钝化、电子传输层/钙钛矿吸光层的能级排列优化及器件光响应能力的同时调控,提高了电子传输层对光生电荷的抽离效率。其次,对钙钛矿进行掺杂处理并在电子传输层和钙钛矿吸光层之间沉积钝化层,获得了高质量的钙钛矿薄膜并改善界面,促进了光生电荷的产生以及在钙钛矿层/电子传输层界面的高效分离。再次,系统比较了挥发性和非挥发性乙酸盐对钙钛矿结晶性的影响,从而制备出致密平整、大晶粒尺寸和低缺陷态密度的高质量钙钛矿薄膜,改善了钙钛矿/碳层的接触,促进了光生电荷的产生以及在钙钛矿/碳层界面的分离。最后,通过掺杂处理电子传输层,改善了钙钛矿形貌,钝化了钙钛矿缺陷,增强了电子传输层抽离电子的能力。从而提高了载流子在界面处的分离效率,提升了无机钙钛矿电池的光电性能。采用共掺杂手段,通过一步旋涂法在TiO2致密层中引入Co和Eu元素。Co掺杂钝化了 TiO2晶格中缺陷,增强了薄膜的导电性,有利于开路电压的提高;Eu掺杂可以使TiO2电子传输层将吸收的紫外光下转移放出红光,提高了器件的光响应能力,有利于短路电流密度的提高。此外,共掺杂抬高了TiO2导带底的位置,优化了电子传输层/钙钛矿吸光层的能级排列,促进了光生电荷从钙钛矿吸光层到电子传输层的高效传输。通过精细优化掺杂浓度,最终构建的碳基钙钛矿电池光电转换效率达到14.06%,稳定性良好。这种共掺杂为同时大幅提高开路电压和短路电流密度提供了一种优化思路。通过结构设计,在碳基钙钛矿电池中的电子传输层/钙钛矿吸光层间,采用旋涂法插入Al2O3。此外,在钙钛矿前驱液中引入g-C3N4。探讨了协同调控作用对碳基钙钛矿电池的性能影响。g-C3N4使钙钛矿晶粒尺寸变大,吸光度提高,结晶性增强,并钝化了钙钛矿缺陷。器件内建电场增大,载流子分离更加高效。Al2O3可以抑制电子传输层导带上的电子发生反向迁移与钙钛矿价带上的空穴复合。通过精细优化制备参数,碳基钙钛矿电池的光电转换效率提高至14.34%,相较未优化器件,效率提高约36.6%。针对无空穴传输层碳基钙钛矿电池中钙钛矿吸光层和碳层接触差的问题,在钙钛矿前驱液中分别引入挥发性NH4Ac和和非挥发性ZnAc2,系统比较了两种乙酸盐对钙钛矿晶体质量的影响。结合原子力显微镜和场发射扫描电镜表征发现,经过NH4Ac处理的钙钛矿薄膜更加致密平整,有助于改善钙钛矿薄膜和碳层的接触,降低二者的接触势垒,空穴抽离更加高效。由于NH4Ac的引入提高了钙钛矿的结晶性并且钝化了薄膜缺陷,钙钛矿薄膜的非辐射复合大大减少。此外,NH4Ac处理过的钙钛矿,其组分没有发生变化,因此,避免了外来原子对钙钛矿结晶带来的不利影响。基于此构建的碳基钙钛矿电池光电转换效率提高了约23%,未封装的器件置于室温环境中1900h后,效率保持初始的94%。引入Al2O3层后,器件效率提高至14.65%。经过ZnAc2处理后,亦可获得大晶粒尺寸、长载流子寿命的钙钛矿,但由于非挥发性的锌盐最终在钙钛矿中有残留,钙钛矿薄膜有裂缝出现,不利于载流子的高效传输,导致器件性能提高幅度较小。针对电子传输层/无机钙钛矿界面电荷积累的问题,创新性的选取Eu(NO3)3处理SnO2电子传输层,减少了 SnO2/CsPbI2Br界面电荷的积累,研究了 Eu(NO3)3的调控机理。一方面,Eu(NO3)3的引入改善了钙钛矿形貌,钝化了钙钛矿缺陷,增强了钙钛矿结晶性。另一方面,Eu(NO3)3的引入提高了电子传输层抽离电子的能力,减少了电荷在界面的积累,抑制了光生电荷在界面处的非辐射复合,促进了光生电荷的高效传输。通过精细优化掺杂浓度,构建的无机钙钛矿电池的最高效率可达16.83%,其中,开路电压达到1.4V,开压损失低至0.52 V。