【摘 要】
:
转接板(Interposer)是三维集成微系统中高密度互联和集成无源元件的载体,是实现三维集成的核心材料,具有摩尔时代硅基板相当的意义。可光刻玻璃作为转接板相对硅和陶瓷具有热膨胀可调、工艺复杂度低等优点而成为研究热点,由于可光刻玻璃的损耗和集成度的问题限制了其应用推广。如何降低可光刻玻璃的损耗(提高微波性能)和减小孔径(提高集成度)是亟需解决的问题。本文针对上述问题开展了研究:选择Li-Al-Si
论文部分内容阅读
转接板(Interposer)是三维集成微系统中高密度互联和集成无源元件的载体,是实现三维集成的核心材料,具有摩尔时代硅基板相当的意义。可光刻玻璃作为转接板相对硅和陶瓷具有热膨胀可调、工艺复杂度低等优点而成为研究热点,由于可光刻玻璃的损耗和集成度的问题限制了其应用推广。如何降低可光刻玻璃的损耗(提高微波性能)和减小孔径(提高集成度)是亟需解决的问题。本文针对上述问题开展了研究:选择Li-Al-Si体系的可光刻玻璃,根据多离子耦合效应设计了基础配方,探索了中和碱效应、压制效应、稳定效应、给氧能力在可光刻玻璃降低损耗中的机理和方法;通过优化光敏性能,制备了低损耗、小孔径的可光刻玻璃,主要研究结果如下:首先,通过添加光敏剂(Ce2O3)、成核剂(Ag2O)、还原剂(Sb2O5)以达到可光刻的性能。在此过程中通过优化光敏剂和还原剂的含量增强了光敏性,通过工艺参数和工艺流程的优化抑制了在熔制过程中Li2SiO3的析出制备了具有优异可光刻性能的光敏玻璃,并建立了玻璃从熔制到晶圆精加工到通孔成型的工艺平台。其次,探索了网络修饰体、网络中间体、网络形成体在可光刻玻璃中的压制效应、稳定效应、给氧能力和介电损耗之间的内在联系。适量的碱土金属网络修饰体一方面阻碍离子迁移降低阳离子在交变电场下引起的热极化和位移极化,另一方面通过连接由一价阳离子产生的非桥氧键以达到结构的稳定和平衡,从而降低可光刻玻璃的介电损耗。发现当Ca O的含量为2%时,介电损耗有最小值0.003,同时机械强度达到90 MPa。适量的网络中间体(Al2O3)通过形成[AlO4]四面体,和原来的玻璃网络中的[SiO4]相连,形成环状结构,[AlO4]会吸引一价阳离子保证电价平衡;同时由于Al3+离子半径比Si4+离子半径大,会引起相邻O2-的球形变形,在交变电场下介电损耗会有所降低。研究发现当Al2O3的含量为4%时,介电常数和介电损耗分别为5.0和0.0025。当网络形成体(B2O3)和碱金属阳离子之比小于1时,在玻璃网络中会以[BO4]为主导,由于两个[BO4]不能直接相连,因此需要[BO3]或者[SiO4]或者阳离子与之结合,使得玻璃的网络结构连接更紧密,限制了碱金属阳离子的迁移,从而降低介电损耗。研究发现,当B含量为2%时,介电损耗进一步降低为0.0015。最后,通过对影响可光刻玻璃集成度的因素(包括曝光能量、退火温度、退火时间、刻蚀时间)进行研究,得出通孔最佳条件:曝光能量为5 J/cm2、退火温度为565℃、退火时间为45 min、刻蚀时间为12 min,通孔最小可达20μm,孔密度最高可达10000/cm2。同时对经过处理后的可光刻玻璃样品进行通孔金属化验证,通过气相沉积制备种子层、电镀完善孔内金属化、机械抛光进行面铜的去除,最终得到孔内金属实心填充的转接板,为高性能三维集成微系统的研制奠定了材料基础。
其他文献
随着现代战争数字化程度的提升,具有不同作战目的的射频无线系统大量应用于军事作战平台中,随之产生的系统复杂化、平台隐身性以及电磁兼容等问题亟待解决。于是射频综合一体化系统应运而生,成为解决上述问题的有效途径,它能够将通信、雷达、电子战等多种功能集成在一个射频系统中,可以实现硬件和信息资源的高度共享。对于需要同时实现不同作战任务和覆盖多个工作频段的射频综合一体化系统,通过可重构技术能够在同一射频硬件平
电力电子技术作为电能转换和传输的关键技术,推动着电动汽车、高铁等绿色产业和产品的快速发展。而绝缘栅双极型晶体管(insulated gate bipolar transistor,IGBT)凭借着高输入阻抗和低导通压降的特点,成为了电力电子技术中不可缺少的核心功率器件。随着全球对节能、减排、低碳环保的不断追求,IGBT已成为功率器件中最重要的核心器件之一。为实现电力电子系统智能化、集成化和小型化,
目标与通常为粗糙面的复杂环境之间的复合电磁散射问题是计算电磁学中一项极具挑战性的课题,在微波遥感等诸多领域具有重要的理论意义和工程应用价值。在诸多计算电磁学方法中,高频方法以其高效性和精确性一直受到广泛的关注和研究。本文围绕高频方法,特别是弹跳射线法(Shooting and Bouncing Ray,SBR)针对粗糙面和目标复合电磁散射问题进行研究。本文的主要工作和创新点可以归纳为以下几个方面。
随着无线电定位技术被广泛应用于更加复杂的定位场景(如室内场景、观测资源受限场景等),传统的两步定位法逐渐暴露出定位精度不足、分辨能力受限等问题。针对两步定位法的次优性,研究者们提出了一种新兴的最优定位方法——直接定位(Direct Position Determination,DPD)法。DPD联合所有测量,直接从测量中估计目标位置,避免了两步定位法因分步处理导致的信息损失,可以显著提高系统在复杂
W波段行波管作为宽带大功率毫米波源在雷达、电磁对抗、卫星通信等领域具有广阔的应用前景,如何研制出该类器件是目前真空电子学和本行业发展的关键课题。当工作频率提高时,由于尺寸共渡效应导致高频结构尺寸变小,损耗增大;而且圆形电子注的电流密度增加将会给电子注的聚束带来很大的困难,使得参与注-波互作用的电流难以提高,从而导致器件的输出功率降低。这不仅需要探索新的毫米波太赫兹低损耗慢波结构,而且也需要开辟提高
5G时代的正式开启,以及光传感和光信息处理等领域的快速发展,对光电子及光子器件的集成度和器件特性指标提出了更高的要求,频响特性作为器件的关键工作指标迫切需要进行高精度和多维度的表征。传统光谱分析方法,受限于光栅的分辨率无法实现高精度频响特性表征,基于光信号调制的电信号分析方法将光信号转换至电域进行处理,得益于电谱的高分辨率,这种方法有望实现高精度的器件幅频响应和相频响应的表征,对器件的设计、制作和
功率放大器(功放)是现代通信系统发射机中不可缺少的一部分,对其性能的提升是众多学者研究的方向。为了满足海量通信设备、增强移动宽带和超可靠低延时的需求,功放也面临高效率、大带宽和高峰均比信号等挑战。超宽带应用中,存在因低频谐波和高频基波重合而产生的阻抗冲突;高峰均比信号应用中,存在因低功率和高功率最优阻抗不同而产生的阻抗冲突。传统无源匹配网络难以提供上述阻抗冲突的解决方法,而有源负载调制技术则具有提
IGBT(Insulated-Gate Bipolar Transistor)和LDMOSFET(Lateral Double-Diffused Metal-Oxide-Semiconductor Field-Effect Transistor)均为主流的绝缘栅控型功率器件,低损耗、高耐压和高功率密度是二者的主要设计目标。IGBT受益于漂移区中的电导调制效应,具备较低的导通损耗和较大的电流能力,在
在我国新时代的高等教育发展背景下和世界政治经济格局的变化中,思想政治教育承担了前所未有的任务,是坚持社会主义教育方向的重要教育领域。大学生第二课堂自上个世纪八十年代末登上高校教育舞台,经过三十多年发展,成为集思想政治教育、校园文化传承、综合素质培养、学生管理载体等多种功能为一体的教育手段。随着思想政治教育理论和学科的发展,大学生第二课堂作为思想政治教育重要途径的作用和意义日益明确,其理论基础、顶层
随着无线通信系统不断演进,高速、高可靠性、高集成度、多功能和低成本的无线通信系统的研发需求日益增长。目前低频的微波频谱资源日益紧张,而在微波频谱的高频段,数字通信技术遭遇了成本剧增、整机功耗增加、数模转换性能下降和通信可靠性下降等问题。为此,加拿大蒙特利尔大学的Caloz教授创新性地提出了基于群时延复用的模拟信号处理技术,利用该技术有望发展成为除数字通信以外的一种新通信体制,而该技术的核心就是群时