基于区块链的可靠性和延迟感知移动边缘计算卸载方案研究

来源 :天津大学 | 被引量 : 0次 | 上传用户:mumuduck
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
移动边缘计算是指在移动网络边缘部署存储和计算资源,为移动网络供应云计算能力和IT服务环境,从而为移动用户提出高带宽和超低时延的网络服务解决方案。计算卸载在移动边缘计算中是一项关键技术,可以为资源受限设备运行计算密集型应用提供计算资源,加快计算速度,节省能源。移动边缘计算中的计算卸载是将移动用户终端的计算密集型任务卸载到边缘环境中,弥补了终端设备在计算性能、资源存储以及能效等方面存在的不足。移动用户对于计算卸载的计算结果普遍认为是可信的,但是实际上边缘服务器存在不诚实的行为,这会造成计算可靠性问题。目前已有研究提出基于密码学的非交互式的解决方法,但是需要可信的第三方进行计算验证,并没有完全的去信任化进行计算验证。针对计算卸载中的计算可靠性问题,本文提出将区块链代替第三方验证机构并结合零知识证明来实现可信的可靠的计算卸载结果的验证,其中根据区块链的智能合约可以执行完全可信计算结果的验证。本文实验搭建了框架的简易原型,验证了框架的可行性并实验分析了框架的计算消耗和时间消耗。为降低引入区块链后计算卸载的时间延迟并且保证计算的可靠性,联合计算卸载可靠性和延迟的移动边缘计算卸载问题被提出。已有研究提出了一个优化问题以最小化延迟和最大化计算卸载可靠性。但是其中计算卸载可靠性只是将计算卸载时通信阶段的传输可靠性考虑在内,实际上计算卸载过程中还会出现计算阶段超时和计算结果不可靠的情况。本文在计算可靠性框架基础上提出可靠性和延迟感知计算卸载优化问题,其中可靠性包括通信阶段的传输可靠性、计算阶段的计算时间可靠性和计算阶段的结果可靠性。针对该优化问题本文提出启发式算法进行求解,并实验验证了提出的启发式算法相较于传统算法具有更低的时间和更高的可靠性以及更低的联合成本。
其他文献
目前虚拟现实技术发展迅速,其中立体全景视频作为虚拟现实呈现的重要载体,能够提供给观看者无与伦比的沉浸感。然而立体全景视频的制作需要经历拍摄、拼接、投影、编解码等多个步骤,在这些过程中立体全景视频往往会受到各种失真因素的影响。为了保证立体全景视频呈现的最终质量,对立体全景视频进行质量评价具有重要的理论和现实意义。为了开展相关研究,本文建立了立体全景视频质量评价数据库。在考虑了立体全景视频的制作与播放
随着互联网技术与移动通信技术的快速发展,空前发达的信息化时代在丰富与方便了人们生活的同时,也带来了信息过载的问题。推荐系统,作为解决信息过载问题的有效方法,能够帮助用户进行信息过滤,并提供精确且有针对性的推荐服务,现已经被广泛的应用到电子商务、社交、影音娱乐等领域中。近些年有关网络表示学习技术的研究取得了突出成果,其对网络结构信息的表示能力为推荐算法的研究提供了新思路。本文以网络表示学习与推荐算法
基于深度学习的3D模型检索往往受限制于有限规模的已标注模型数据,因此现有算法泛化能力有限。域自适应算法可以在有标注域上学习域间共有的知识和模式,从而将其应用于无标注域数据,因此可以有效解决此类问题。本文通过将域自适应算法引入3D模型检索任务,提出了一种基于反向传播的域自适应3D模型检索算法,并基于该算法构建了一个高效的3D模型检索演示系统。通过对比实验,验证了算法的有效性和优越性。首先,通过将基于
人脸识别是指利用计算机系统对输入的人脸进行分析并比较其有效的特征信息来分辨被输入者身份的技术,其中处理人脸差异是人脸识别的关键所在。现有的人脸识别在受限环境下趋于成熟,然而在非受限环境下,人脸会受遮挡、光照、姿态等因素的影响出现差异性,降低人脸识别的性能。研究非受限环境下的人脸差异对人脸识别技术的应用具有重要的实用价值。本文针对非受限环境中的遮挡与姿态因素,通过结合生成对抗网络框架,提出了以下两种
随着智能城市的发展,车辆互联网(IoV)引起了研究者们的广泛关注。智能车辆可以通过多方合作组建车辆团队,在智慧城市中执行移动众包任务。如何组建车辆团队建立安全的模型以实现最大的社会福利,成为车辆移动众包活动中的巨大挑战。尽管目前的研究已经提出了一些移动众包模型,但是很少有人关注实时车辆团队合作。此外,交通压力带来的拥堵为人们生活带来不便的同时也带来了机遇,闲时团队资源的有效利用成为研究者们一个新兴
近年来,众包渐渐成为了一种新的商业模式。众包面向的群体比较广泛,参与到众包平台中的工作者背景知识,专业能力等各不相同,导致众包结果质量参差不齐。因此,质量控制成为众包研究领域的重要分支。目前的质量控制方法大多基于中心化平台,并不能保证完全可信,存在数据泄露,数据丢失等问题。此外,现在的众包平台的激励机制多采用固定定价的方式,这也导致了报酬的不合理分配。为了解决上述问题,本文提出了基于区块链的众包质
当前我国交通基础建设规模逐步增大,互联网的飞速发展也为交通出行带来了更多的可能性。在这样的信息化时代中,面对交通方式的多元化和复杂化,课题组构建了智能情报分析框架IAF,基于复杂网络挖掘算法对地、事、人、行为及相互关系进行感知、理解、预测。其中异常检测是该框架中的关键算法,基于交通复杂网络的情报分析是该框架中的重要功能。本文利用物理空间获取共享单车、网约车等大量车辆的城市交通出行行程数据和轨迹数据
函数名称预测是代码分析中的一项重要下游任务。优秀的函数名称可以增加程序或者代码的可理解性,帮助开发人员轻松的理解他人的代码,这对软件产品的扩展和维护至关重要。近年来,研究人员提出了大量不同的函数名称预测模型,而随着机器学习的发展,函数名称预测方法逐渐从传统的代码分析方向转变到深度学习代码表示上,各种基于机器学习的函数名称预测工具层出不穷。但是在利用机器学习的模型完成函数名称预测任务上,仍然存在两个
截止2019年PubMed数据库中收录的生物医学文献超过了三千万篇,从这些文本中挖掘出有效的生物医学信息用于疾病诊断和新药研发等领域成为研究的热点,而生物医学事件抽取是其焦点问题。生物医学事件抽取的主要任务包括事件触发词和事件元素识别,目前的相关的研究存在未能充分挖掘文本语义特征和数据样本标注不足的问题。针对触发词识别中未能充分挖掘文本语义特征的问题,本文提出了基于多角度学习关键语义信息的方法,该
社会关系的研究在社会学领域中一直是一个重要的话题。随着互联网技术与社会媒体平台的蓬勃发展,越来越多的人活跃在社会媒体中。这为社会关系的研究提供了一个新的途径。人们在社会媒体中的交互是现实社交在网络上的映射,这为通过社会媒体研究社会关系提供了可靠性。并且,海量社会媒体数据也为社会关系的研究带来了极大的便利。本文旨在通过社会媒体数据进行多元化社会关系画像。多元化主要体现在数据的多元化和方法的多元化。数