【摘 要】
:
通过胶体化学方法制备的ABX3(A=Cs,B=Pb,X=Br、Cl或I)结构的铯铅卤钙钛矿量子点具有接近100%的光致发光量子产率(PLQY)和较小的发射光谱半峰宽。通过卤素离子交换调节光学带隙,Cs Pb X3(X=Br,Cl和I)钙钛矿量子点的发射波长可以覆盖整个可见光波段,在绿光和红光区域具有高于90%的光致发光量子产率,这些优点使其在发光二极管,激光器,太阳能电池和光电探测器等领域具有广阔
论文部分内容阅读
通过胶体化学方法制备的ABX3(A=Cs,B=Pb,X=Br、Cl或I)结构的铯铅卤钙钛矿量子点具有接近100%的光致发光量子产率(PLQY)和较小的发射光谱半峰宽。通过卤素离子交换调节光学带隙,Cs Pb X3(X=Br,Cl和I)钙钛矿量子点的发射波长可以覆盖整个可见光波段,在绿光和红光区域具有高于90%的光致发光量子产率,这些优点使其在发光二极管,激光器,太阳能电池和光电探测器等领域具有广阔的应用潜力。然而,相对于绿光和红光量子点,本征的蓝光钙钛矿量子点的PLQY很低,需要通过B位阳离子掺杂提高荧光性能及稳定性。本文采用Nd3+和卤素离子的共同掺杂作用,获得高亮蓝光量子点,研究Nd3+在蓝光量子点中的掺杂效应。分别采用了热注入法和离子交换混色法合成了Nd3+掺杂的蓝光量子点,对比研究了两种方法的掺杂效果,并讨论了掺杂的实现机制。主要内容如下:(1)采用热注入法按照不同化学计量比制备了Nd3+掺杂的Cs Pb(Cl/Br)3蓝光钙钛矿量子点。相对于未掺杂的量子点,Nd3+掺杂明显提高了PLQY,发光峰位于456 nm和489 nm的量子点,其PLQY分别达到了60%和70%。此外,相对于489 nm的量子点,发光峰位于456 nm的量子点的荧光性能及其稳定性获得了更加明显的提升。XPS表征结果说明热注入法需要在较高的Nd3+掺杂浓度下才能有效提升产物量子点的性能和稳定性。(2)进一步提出了以热注入法制备Cs3Nd Cl6量子点中间体,通过Cs3Nd Cl6量子点与Cs Pb Br3量子点之间的离子交换作用,实现了Cs3Nd Cl6量子点的解离和Cs Pb(Cl/Br)3量子点的形成,本文将该方法称作室温离子交换混色法。此外,通过调整前驱体量子点的混合比例,可以轻松获得发射波长从419 nm到489 nm的高质量全波段蓝光钙钛矿量子点,PL峰位在489 nm处具有93%的高PLQY。TEM结果表明Cs3Nd Cl6量子点的形状为标准的六边形,并且Nd3+掺杂的蓝光量子点尺寸分布均匀性相对于纯Cs Pb Br3有了很大的改善。通过光热稳定性表征证明室温离子交换混色法制备的量子点具有优异的稳定性。XPS表征结果说明室温离子交换混色法在较低的Nd3+掺杂浓度下就能有效提升产物量子点的性能和稳定性。
其他文献
碳纤维复合材料(CFRP)具有优异的机械性能且其密度较轻,被广泛的应用于航空航天材料领域。但碳纤维复合材料的电导率与金属相差较大,遭遇雷击时将会产生较高的温度使材料严重损伤,因此研究碳纤维复合材料雷击损伤机制对于飞行器雷电防护具有重要的意义。目前国内外学者已对电弧和焦耳热对复合材料雷击损伤的影响开展了大量的试验与仿真研究,但缺乏气体冲击等力学因素对材料损伤影响的研究工作。雷击碳纤维复合材料是一个多
黄山区的茶叶生产对电压质量的要求很高,当每年的茶季到来时,黄山区茶叶产区负荷表现出时段性负荷急剧攀升和急剧下降的特性。电网就会阶段性出现茶区配变低电压的现象,影响茶叶的生产制作,这是黄山区电网运行的一个突出矛盾,需要认真研究并逐步解决。首先分析了茶季用电矛盾的原因,深入阐述了黄山区电网茶季负荷分布的时间集中、地理不平衡和曲线相似等特征,并使用曲线相似度建立模型来描述茶季负荷。具体研究茶区配变低电压
电力行业发展至今,各种新型用电设备的涌现,带来的是整个电力网络电能质量的降低和损耗的增加,这其中尤以配电网为甚。电能质量问题除了谐波污染和功率因数低,三相负荷不平衡也日渐严重,且对配电网的损耗也有较大影响。本文提出的电能质量综合管理器对于改善电能质量和降低配电网损耗效果显著,主要研究内容如下:本文首先介绍了课题的研究背景及国内外对于电能质量治理和配电网降损的研究现状,并对配电网中存在的电能质量问题
太赫兹(THz)波,即频率处于0.1-10 THz(波长在3000-30μm内)范围内的电磁波,其频谱介于微波与红外波之间。太赫兹波的短波段与红外光重叠,长波段与微波、毫米波重叠,处于电子学向光子学的过渡领域。因其在电磁波频谱中特殊的位置,也使得其表现出微波和红外波所不具有的特殊物理属性。这些特殊的物理属性使太赫兹技术在航空航天、生物医学检测、成像、太赫兹通信、军事等领域展现出良好的应用前景及应用
随着国民经济的飞速发展,电力系统的规模也日益扩大,人们对供电质量的要求越来越高。在三相四线制低压配电网中,三相负载不平衡对电能质量有着不利影响,一方面大量单相负载的使用造成三相负荷不对称,产生的负序及零序电流影响电能质量;另一方面非线性负载的存在造成负载电流波形畸变,产生的谐波电流不仅影响电流波形的正弦度,而且威胁着电网的安全运行。本文针对配电网负载不平衡所带来的负序、零序以及谐波电流的补偿治理问
太赫兹(THz)科学和技术已经被国际科学界认为是下一代IT产业的基础,吸引了各国科学家的目光,同时也吸引了不少国外公司对其进行商业化产品的开发。近几年,THz技术发展迅速,逐渐由一门基础科学研究步入到了通信、工业生产、医疗检测、环境监测、安全检查等领域的实际运用当中。天线是THz通信、探测、成像等系统的重要部件,目前在0.1-1 THz频段缺少实用化的THz相控阵天线,制约其发展的一个重要因素是缺
集成电路产业的飞速进步,不仅带来了集成电路与芯片的功耗问题,另一方面,以智能手机、平板电脑等为代表的便携式电子设备的大量应用,以及集成度和工作频率的迅速提高,都使人们对低功耗的需求越来越深。因此,集成电路的低功耗设计技术成为设计中越来越大的占比。触发器作为时序电路的重要组成部分,广泛分布于数字集成电路系统当中。关于低功耗高性能的触发器设计尤为重要。对于CMOS集成电路来说,有很多因素会影响其功耗,
随着科技发展、国家政策的大力支持以及居民生活方式和生活观念的转变,我国能源消费格局也在悄悄改变。太阳能由于其节能、环保、可再生的特性在分布式光伏扶贫电站、智慧光伏家庭系统以及大规模集中式光伏电站中得到大规模应用。逆变器作为实现直流到交流电能变换的重要设备,其恶劣的室外工作环境、交直流侧扰动、设备组装工艺和内部的电、热应力导致逆变器失效率大大提高,一旦发生故障可能导致整个光伏发电系统崩溃,造成经济损
可再生能源有着清洁、可以循环再生的优势,但可再生能源发电却有不稳定性和间歇性的特点。因此可再生能源发电系统常与储能设备和电网组成交直流微网系统来协调控制。储能设备和电网之间,双有源桥DC-DC(DAB)变换器有着广泛应用。本文主要介绍了各种移相控制的基本工作原理和建模,并基于三重移相对DAB变换器的回流功率和暂态偏置进行了优化。本文首先分析了单移相、扩展移相和双重移相的基本工作原理,对比三种移相方
随着传统化石能源的逐渐枯竭,全球能源供给问题日益突出。光伏发电作为绿色环保可持续的新型能源,不仅可缓解能源危机,也可减轻化石能源引发的各种环境问题。随着越来越多的光伏电站建设并投入运营,光伏发电在未来的能源发电中必将占有越来越大的份额,同时由于光伏发电功率具有明显的波动性和随机性,其输出功率受多种气象和环境因素以及自身结构特性影响,光伏功率输出过高和不足都会影响电网的安全可靠运行,光伏发电给电力系