论文部分内容阅读
载人登月是人类文明演化至今最为尖端的科技工程,它展现的是一个国家强大的科技、政治、军事以及经济实力,彰显的是国家和民族对未知世界探索的强烈渴望。本世纪初叶,美国Constellation计划、欧洲Aurora计划以及中国探月工程计划的相继提出,彻底拉开了人类重返外太空的序幕,载人登月也被赋予了全新的涵义和使命。探测内容的多样化,轨道设计的复杂精细化,宇航员安全保障的突出化,进一步加大了载人登月工程任务设计的复杂度与难度。本文应时代背景,尝试解决工程任务设计中所遇到的轨道动力学问题,研究了精细模型下月球附近交会对接和全月面覆盖变轨策略,提出了全程可自由返回的载人多段自由返回轨道,并确定了地月转移新型轨道设计方案。在地月转移新型轨道设计研究中,本文针对地球高纬度再入提出基于拱线偏置的返回轨道设计方案,确定了影响再入点方位和再入航程的主要设计参数;改进了圆锥曲线拼接模型下影响球处轨迹状态求解算法,合理避开影响球处初值猜测,减少了数值修正,提高了计算效率。在多段自由返回轨道研究中,本文强调轨道设计的灵活度和故障返回的可行度。经典自由返回轨道设计难度大、发射窗口窄,无法有效保证光照和测控要求的满足;Hybrid轨道虽设计灵活、窗口较宽,但牺牲了安全属性;多段自由返回轨道兼收并蓄,轨道设计不仅灵活且满足无动力故障返回。本文在圆锥曲线拼接模型下完成多段轨道定义,在次高精度伪状态模型下,完成轨道解析建模与特性分析。数值计算表明伪状态模型误差仅为圆锥曲线拼接模型误差的10%。在月球附近交会对接控制策略研究中,本文强调规划算法的精确性与时效性。提出三步迭代法,完成控制策略由C-W模型、二体模型到高精度模型的演化,并比对遗传算法,证明了三步迭代法的最优性。引入J2摄动模型,完成局部最优控制策略的解析构建,显著减小了因C-W模型不精确带来的法向变轨误差,并有效避免了因多步迭代带来的时间损耗。数值计算表明,交会终端位置误差仅为C-W模型的误差的1%;脉冲近似解可有效转变为有限推力解。在全月面覆盖控制策略研究中,本文关注规划算法的合理性与故障返回的可行性。提出基于多段自由返回轨道的多脉冲控制策略。数值仿真表明,全月面覆盖所需总脉冲消耗小于2.6km/s,多段中途转移脉冲消耗小于0.4km/s。