论文部分内容阅读
收缩变形特性一直是水泥基材料性能研究中的关键技术问题之一,收缩引起的开裂已经成为当代混凝土工程界触目惊心的普遍现象。低水胶比高性能水泥基材料的发展,以及矿物掺合料深层次研制开发和可持续发展的社会需求,给传统的理论框架体系带来了困惑与挑战。在各种收缩的区分、测试方法、机理、数值模拟以及抑制方法上存在着的种种问题,严重制约了该领域的研究进展。矿物掺合料对收缩的影响规律及机理也存在着较大的争议。本文的研究立足于低水胶比的大掺量矿物掺合料水泥基材料(Cement-based material at low water to binder ratio incorporating high volume mineral admixtures,以下简称HMLWBM),针对上述问题应用现代测试技术,采用学科交叉的方法,研究分析各种收缩过程的热力学变化。采用宏观测试与微观分析相结合的研究方法,将理论与工程实践相结合,并借助现代的计算机数值技术进行了分析研究。在总结现有的国内外关于各种收缩的定义及测试方法的基础之上,明确了几种收缩的定义,明确了自收缩与自干燥收缩、自收缩(表观体积的减小)与化学减缩(绝对体积的减小)定义的区别与联系。研制了一种新的早龄期自收缩自动化测试系统,采用非接触传感器和立式测量方式,对水泥基材及混凝土的自收缩实现了分阶段、全过程的自动测试,使得自收缩的测量初始时间可以提早到浇筑成型后即开始。该系统有效避免了模具的约束和外界震动的干扰,测试过程中毋须拆模及搬动试件,实现了数据的自动化采集及分析。试验结果与定义相符,长期测试结果稳定可靠,试验结果具有很好的重复性。采用新的测试手段和方法,对HMLWBM的收缩变形行为进行了分阶段、全过程的分析,研究了矿粉和I级粉煤灰对自收缩及干燥收缩的影响规律。粉煤灰的大量掺入对于自收缩具有明显的抑制作用,并随掺量的增加效果更加明显;但是增加了干燥收缩,尤其是干燥初期的收缩,随着粉煤灰掺量继续加大(从30%增加至50%),增加干缩的程度减小。比表面积为439m2/kg的矿粉大量替代水泥后,明显增加了硬化混凝土的自干燥收缩,随着掺量的增加而更加显著;在50%掺量以内干缩随矿粉掺量增加而减小,继续增加掺量干缩加大。粉煤灰与矿粉复掺可以在较大的掺量下综合抑制其自收缩与干燥条件下的失水收缩,是提高大掺量矿物掺合料高性能水泥基材料收缩体积稳定性的重要技术途径。同时,研究表明HMLWBM的收缩发展符合ε( t )=ε∞(1?Aeat +Bebt)的规律。总结相关文献资料,对已有的收缩数学模型进行了分析与比较,从热力学角度探讨了毛细管张力理论模型存在的问题,并对毛细管负压的作用面积系数进行了修正。通过对自干燥收缩过程的热力学分析,证明了自干燥收缩的机理是化学减缩,而不是自干燥(或者说通常意义的蒸发)。在此基础之上建立了基于机理的自收缩预测模型。通过对扩散方程在时间域和空间域上的离散,并采用有限差分法,结合孔径分布模型,实现了对水泥石水分迁移的数值模拟。同时结合改进后的毛细管张力理论,建立了基于机理的水泥石干缩预测模型。根据复合材料特性,建立了普通集料混凝土的干缩和自收缩的数学模型。在所建立的模型的基础之上,