【摘 要】
:
语音增强在数字信号处理领域占据着举足轻重的地位,能在改善受损语音质量的同时提升其可懂度,在智慧家庭等方向得到了广泛地应用。随着深度学习在计算机领域的普及,基于深度学习的网络模型训练成为了当下实现语音增强的主流方法。目前主要是基于深度学习来搭建网络模型,并结合大量数据运算,在模型中学习从带噪特征映射到增强目标的函数,以解决语音增强任务。然而,该方案仍然存在着语音增强质量不高、模型训练速度缓慢以及模型
论文部分内容阅读
语音增强在数字信号处理领域占据着举足轻重的地位,能在改善受损语音质量的同时提升其可懂度,在智慧家庭等方向得到了广泛地应用。随着深度学习在计算机领域的普及,基于深度学习的网络模型训练成为了当下实现语音增强的主流方法。目前主要是基于深度学习来搭建网络模型,并结合大量数据运算,在模型中学习从带噪特征映射到增强目标的函数,以解决语音增强任务。然而,该方案仍然存在着语音增强质量不高、模型训练速度缓慢以及模型结果评价指标分数不高的不足。为解决上述问题,本文基于深度神经网络对语音信号增强展开了系列研究。1、文中对基于深度神经网络的语音增强模型展开了研究,分析其网络训练使用的损失函数因没有充分利用语音帧与帧之间的相关性,导致该模型增强效果不够好。因此,在此基础上引入一种优化的损失函数,结合深度神经网络训练模型,使语音信号邻帧之间的相关性得到了充分利用。仿真实验证明,文中所给训练方案的语音增强效果明显优于原训练方案以及传统模型训练方案,极大地增强了语音质量和可懂度。2、文中提出了引用图像领域中的U-Net模型,利用U-Net模型端到端的特点,结合残差网络构建一种改进的模型用于训练语音增强。其创新在于将残差单元引入该模型的编解码块中,也即是将残差网络结构的跨层连接和拟合残差项应用到模型训练中,该方法更有利于恢复目标语音的细节特征信息,增强了模型训练的稳定性,提高了模型的特征提取能力和训练效率,改进后的Residual-U-Net网络模型能够实现更优的语音增强效果。仿真实验表明:与现有的其他几种语音增强方法相比,文中所提出的Residual-U-Net算法能够提高语音质量,减少语音失真,具有一定的降噪效果。综上,本文主要探究基于深度神经网络的单通道语音增强算法。实验结果表明,本文的算法与传统方法相比,能够进一步提升语音的质量和可懂度。最后对本文内容总结并提出了未来的研究方向与趋势。
其他文献
优化问题广泛存在于科学和工程应用中,通常具有大规模、多模态以及多个目标之间相互冲突等特性。传统算法求解这些问题时,在计算成本、时间消耗上面临着越来越大的挑战。近年来,进化算法,尤其是群智能优化算法,因其在解决复杂问题时的高效和稳定而受到越来越多的研究,例如人工蜂群算法,蚁群优化算法和粒子群优化算法。其中,粒子群优化算法凭借独特的群体仿真行为与高效稳定的优化性能,已经被广泛研究并应用于各种优化领域问
随着互联网、传感器等技术的发展,社会的信息化不断被推进,全球数据的生产速度也在飞快增长。众所周知,移动通信数据是承载着通信业务与互联网信息的大动脉,是网络信息时代发展的重要基础设施。因此,通信大数据的概念越发受到关注,数据价值信息的挖掘也逐渐成为研究热点。其中,数据集中项与项之间关联规则挖掘技术的分析和发现也是数据挖掘过程中的重要分支。同时,该项研究挖掘的规则中所蕴藏的潜在价值也是前所未知的。因此
伴随着机器人技术的快速发展,移动机器人在日常生活和工厂工作的身影越来越频繁。论文针对生活、工业上的移动机器人可以自主运动,完成特定任务,如监控环境、搬运小物件等,所提出的全向移动机器人的研究。分析麦克纳姆轮的的运动学方程及其全向运动车轮的转向关系、对移动机器人同时定位和创建地图(SLAM)以及路径导航规划展开研究,以ROS作为软件基础设计了自主导航系统,同时搭建了四轮全向移动机器人样机,验证自主构
求解最优化问题一直都是计算机工程、生产调度、人工智能等领域广泛关注的一个问题,其核心思想是在可行解范围内设计符合特定约束条件的方案,使得目标最优化。随着计算机科学技术的飞速发展,经典的传统优化方法已不足以解决约束条件越加复杂的优化问题。群智能优化算法普遍具有灵活度高、寻优性能良好、鲁棒性强等优势,该类算法可以更好的解决非线性、大规模的复杂优化问题,因此自其提出之日起便受到广泛的关注与研究。近年来,
伴随着互联网技术的迅速发展,网络的安全问题越来越引起人们的关注。在复杂网络中,存在着大量的攻击性病毒,一旦网络中的计算机被病毒感染并爆发,将会对人类的生产生活造成不可估量的损失。因此,本文针对网络安全中存在的问题,研究了恶意代码的分类和病毒的传播控制方法。通过从不同的角度来遏制或减小病毒在计算机中的传播,从而控制其造成的不良影响。本文主要进行两方面工作:(1)针对恶意代码家族存在的混淆问题,提出了
随着双目立体视觉理论的发展,以及计算机硬件计算能力与影像采集设备精度的提升,双目立体视觉技术在三维测量、目标定位与三维场景重建等领域应用愈加广泛。在环境复杂的井下矿山中,实现准确、稳定的出矿计量,是当前矿山企业在生产管理中必须考虑的现实问题。针对矿斗载矿量测量的问题,本文以形状不规则的钨矿石为研究对象,提出了一种基于双目立体视觉的非接触式体积测量方法,并对形状不规则的矿石进行了体积测量试验。双目视
影响最大化问题旨在从社交网络中找出能使信息扩散范围最广的Top-k个用户作为信息源发散信息。社交网络结构的多样化不断给影响最大化问题注入活力,让它在近二十年里经久不衰,一直是学术界的热门问题。本文从基于割点的社交网络影响最大化算法和通过优化网络结构实现影响最大化两个方面展开如下工作:(1)基于割点的社交网络影响最大化算法:现有算法主要关注于节点的特征,较少从社交网络的连通性角度来看待影响最大化问题
本文的研究基于现实安检过程中,管制物品图像的语义分割来展开。目前,管制物品的检测工作大部分是通过安检X光机对包裹扫描,人眼判断包裹是否夹带管制物品,其中,安检X光机对包裹中的一些小目标检测效果较差,甚至检测不到,存在安全隐患,管制物品的自动语义分割能有效提高安检效率和提升安全指数,并同时能够节约人力成本,保障人们在公共出行和公共场所的安全。图像的语义分割是计算机视觉基本任务之一,图像的语义信息是用
水下机器人由于具有携带方便,操作简单的特点,被广泛应用于水下资源勘探与开采,因此,对其控制系统的研究,实现水下机器人稳定、快速、准确的运动控制,具有重要的工程意义。针对水下机器人受水流影响大,受力情况复杂,难以实现高效的运动控制等问题,本文采用串级LADRC控制方法对水下机器人的艏向与深度进行控制;利用粒子群算法对串级LADRC控制器的参数进行优化,具体研究如下:首先,利用solidworks建立