论文部分内容阅读
本文以数值模拟为主研究了一些具有代表性的纤维悬浮流场。 首先,用D2Q9格子模型研究了圆形和椭圆形粒子的二维沉降。对两个圆形粒子沉降的研究表明:沉降具有一定的周期性,初始在后方的粒子会在前方粒子尾涡的作用下加速,当Re数从大到小变化时,沉降依次经历两个粒子交替领先、后方粒子取得领先位置并一直保持、前方的粒子一直保持领先等三种形态;初始相对位置及管道宽度的变化不改变沉降特性。对特定初始分布的两个长径比为3的椭圆粒子的沉降研究表明:在Re数很小的时候,两粒子相互的排斥小,两粒子在管道里不断旋转;而当Re数很大时,粒子会很快地到达稳定的沉降位置和取向;对两者之间的Re数,粒子在翻了一次或几次“筋斗”后,会稳定沉降或者出现反向转动,反向后可能会继续“翻筋斗”。对固壁条件和周期性壁面条件下多个椭圆形粒子的沉降的研究表明:两种壁面条件下,椭圆粒子的取向都趋于水平,某些时刻部分粒子出现与重力方向相反的速度;固壁条件下多根椭圆粒子的平均沉降速度大大小于周期性壁面条件下的平均沉降速度。 其次,采用D3Q15格子模型研究了圆柱状粒子在无限长矩形截面管道里的沉降,研究了单根、两根及多根时的情况。对单根的研究表明:沉降受惯性和壁面的影响;一般来说管道越窄,惯性越小,壁而的影响越大;在壁面影响小时,纤维转平;在壁面的影响大时,纤维的位置在中线附近振动,取向在竖直方向摇摆。对两根及多根纤维沉降的研究表明:纤维间发生频繁的相互碰撞,同时受水动力学作用及壁而影响,沉降过程复杂,在沉降过程中会不断有两两或者多根纤维形成的“倒T”结构的产生和消失;一般来说惯性大、浓度低时,整个沉降与单个纤维沉降的特性越相似;而惯性小、浓度高时,整个沉降与单个纤维的沉降差得较远。对两根纤维的沉降的试验发现了较稳定的“倒T”结构。 最后,用三维涡方法模拟了随时间发展的射流场,用Lagrange颗粒轨道模型模拟柱状粒子在圆射流场中的运动。研究发现:射流场具有很强的携带柱状粒子的能力。随着射流往下游发展,初始随机分布的粒子呈现出局部聚集的现象,并且逐渐出现最优取向。在小Re数流场和大长径比粒子的情况下,粒子位置分布更均匀,取向分布更随机。大St数的粒子位置分布更均匀,占优取向更明显。