基于稀疏贝叶斯学习方法的回归与分类在电力系统中的预测研究

被引量 : 0次 | 上传用户:wolfzz88
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
预测技术是一门复杂的交叉学科,它已经涉及到社会的各个领域,而在电力系统领域中,预测也起着至关重要的作用。不仅仅是电力负荷需要预测,电价、电压充裕性、功角曲线变化、谐波分析、稳定性、故障分类、系统可靠性、运行风险度等都需要进行预测,而这些内容都是回归预测和分类预测的一部分。如何提高预测精度和缩小预测时间是大家最关心的问题,好的预测方法和模型对电力系统的运行与控制、电力系统稳定与保护、电力网络的无功优化调度、电力系统规划运行、发电机组的优化组合、电力市场的交易定价等一系列实际操作问题有着决定性的作用。由于电力系统是一个大规模非线性动态系统,其中必然存在着许多极为复杂的工程计算和非线性优化问题,而且需要很高的时效性,特别是随着电网的不断发展和电力走向市场化,工程师们面临的问题越来越复杂,而人们对电网的安全性和供电可靠性的要求却越来越高。虽然长期以来电力系统自动化研究者一直在寻找高效可靠的方法来解决这些问题,然而电力系统中仍存在许多问题无法得到快速与精确的结果。与传统的计算方法相比较,人工智能(Artificial Intelligence, AI)法对于复杂的非线性系统问题求解有着不可替代的极大优势。它弥补了传统方法的单纯依靠精确数学求解的不足,解决了某些传统计算方法难于求解或不能解决的问题。由于它具有处理各种非线性的能力,以及容许模型不精确性和参数不确定性等特性,近几年来,人工智能技术的应用研究已经几乎渗透到电力系统和电工技术的所有方面,其中不少研究已有实际应用,人工智能技术必然将在较长的时期内和现有传统数学模型计算方法并存,相互协调地形成各种实用的控制和优化策略。利用人工智能的核心是内容——机器学习(Machine Learning, ML),将回归分析(Regression Analysis, RA)和模式识别(Pattern Recognition, PR)进行综合分析是本文研究的重点。针对目前机器学习技术在电力系统应用的发展,本文在总结了现有机器学习方法在电力系统应用现状的基础上,引入了全新的以基于概率的稀疏贝叶斯学习理论的机器学习方法在电力系统数据回归和状态分类上的建模研究,改变了过去电力系统中的回归和分类进行各自单独研究的状态,将回归和分类进行了综合预测分析,同时利用数据挖掘(Data Mining,DM)技术、核主成分分析(Kernel Principal Components Analysis, KPCA)、核函数构造、以及粒子群优化(Particle Swarm Optimization, PSO)算法对模型进行改进,经实验和仿真,在电力系统中期负荷预测和暂态稳定评估模型研究上都得到了令人满意的结果,论文的主要研究内容和创新性成果如下:(1)利用全新的以基于概率学习的稀疏贝叶斯理论机器学习方法及其实用模型:相关向量机(Relevance Vector Machine, RVM),在电力系统数据回归和状态分类两个方面上分别构建了中期负荷预测模型和暂态稳定评估模型,以这两个模型为例子,从机器学习的回归和分类两方面进行全面验证。在同等条件下,与当前最流行的支持向量机(Support Vector Machine, SVM)模型和径向基人工神经网络(Radial Basis Function Artificial Neural Nets, RBF-ANN)模型相比都得到了更好的结果,由于其算法的高稀疏性和基于概率学习的结构,相关向量机不仅得到了很高的预测精度,而且与支持向量机相比它大大减少了核函数参与预测计算的数量,减少了预测计算时间,并且可以提供概率性预测和任意使用核函数等优点。可以预见,相关向量机在电力系统预测控制中有着非常广阔的应用前景,特别是其概率性预测和超高的稀疏性所带来的快速计算特点,对电力系统在线计算和分级控制策略的形成有着非常大实用价值。(2)针对电力系统庞大的日负荷曲线时间序列数据库,提出了基于时间序列形状相似的多重聚类分析方法进行数据挖掘预处理。利用基于欧式距离分析的K-menas聚类方法和基于形状相似度量的凝聚式层次聚类方法对历史负荷数据进行多重聚类分析。该方法能准确对电力系统历史日负荷样本进行符合实际变化规律的分类,并能发现较特殊的日负荷样本。在结合相关向量机回归分析的中期负荷预测模型进行仿真计算后,结果表明使用该方法后在降低了输入向量空间维数的同时也得到了很好的预测精度。(3)由于影响电力系统暂态稳定的因素很多,而且SCADA收集到的现场运行数据也是海量的,若直接对如此庞大的数据空间进行分析,不仅造成了“维数灾”而且往往不能取得很好的效果,针对这种情况提出了核主成分分析法对原始输入特征值进行主成分提取,从中剔除大部分不相关的或冗余的特征值。最后利用基于相关向量机分类的暂态稳定评估模型进行仿真比较,结果显示该方法在得到了良好的预测精度的同时,还大大压缩了输入空间。(4)在相关向量机的核函数构造上创新利用组合核函数的思想,以典型的高斯核函数为基础,分别与之建立多项式核和张量积多维线性样条核的线性组合,并得到相应的组合核函数。为了提高组合核函数模型的效果,本文使用粒子群优化算法对组合核函数的核参数进行自动寻优,排除人为主观因素的影响,得到最优的核参数。在相关向量机中期负荷预测与相关向量机暂态稳定评估仿真中,即在机器学习的回归和分类两个方面,相关向量机的组合核函数模型都得到了比单一核函数模型更准确的预测结果,充分说明了利用组合核函数构造法来提高相关向量机预测模型的准确率是行之有效的方法。
其他文献
随着社会经济的发展,历史进入了消费时代,身体开始重新回到现代的审美视野和日常生活中。在身体现象火热的当代,人们对其投以极大的关注,女性的身体更是成为关注的焦点,它被
知识经济时代,科技竞争、人才竞争是区域竞争的关键。区域教育是区域发展所需要的科技和人才支持的主要来源。教育竞争力尤其是对科技创新和人才培养具有最直接作用的高等教
牡丹,中国特产花卉之一,一直以来深受人们喜爱。随着牡丹研究的不断深入,牡丹文化和应用研究的领域也不断拓宽和延伸,但牡丹与宗教的关系及其在该领域的应用研究不足,缺乏系
1947年,印度终于摆脱英国殖民统治,获得独立国家地位。但风起云涌的冷战局势让印度望而却步。为了获得民族经济发展的自由空间,孱弱的印度选择不结盟作为其对外政策的基本原
由于人们对于城镇景观及城镇环境问题的日益重视,城镇绿地系统建设成为当前城镇规划建设工作中的一项重要任务,同时规划工作由于观念转变及视角转移,也面临新的发展,本文针对
本文用双氯芬酸钠治疗11例痛风性关节炎患者,并与消炎痛和秋水仙碱对照,结果发现,治疗后10例(91%)患者缓解,1例(9%)好转。疗效优于消炎痛治疗组,而与秋水仙碱相仿,但副作用的发
运用有限元软件Midas-GTS模拟溶洞的不同位置、大小对深基坑开挖的影响,分析支护桩内力、位移及土体位移的变化规律,从而划分岩溶处理范围,提出岩溶处理原则,并成功将其运用
一个学科的提出、建立而且将这个学科建好、办强,除了完成和遵循规定程序外,还需要长期的不懈努力和深入探索,同时也需要丰富的历史积淀和迫切的社会需求。崔明德等撰著的《中国
<正>1通用商品条形码概述通用商品条形码亦称EAN商品条形码,由国际物品编码协会制定,通用于世界各地,是目前国际上使用最广泛的一种商品条形码。
焊接薄壁箱形截面(RHS)轴心受压柱的稳定极限状态可能是整体屈曲,局部屈曲,也可能是两者同时存在。如果整体屈曲和局部屈曲同时存在,则两者存在相关作用。本文着重分析了这种