【摘 要】
:
动态规划这一概念是在上个世纪中期Richard Bellman首次提出的,它是解决多阶段决策过程最优化的一种方法,最优化原理是它的核心思想。在过去的半个多世纪,动态规划在运筹学、控制论、工业工程、经济学、管理学等众多领域中扮演着至关重要的角色。值得说明的是,动态规划的一个最为突出的特性就是泛函方程的“嵌入”。将动态规划和泛函方程结合在一起,给我们今后的研究工作带来了很多新的思路。在十九世纪以前,众
论文部分内容阅读
动态规划这一概念是在上个世纪中期Richard Bellman首次提出的,它是解决多阶段决策过程最优化的一种方法,最优化原理是它的核心思想。在过去的半个多世纪,动态规划在运筹学、控制论、工业工程、经济学、管理学等众多领域中扮演着至关重要的角色。值得说明的是,动态规划的一个最为突出的特性就是泛函方程的“嵌入”。将动态规划和泛函方程结合在一起,给我们今后的研究工作带来了很多新的思路。在十九世纪以前,众数学大师多把研究重心放在求解泛函方程的具体方法之上,直到十九世纪初,才将研究重心转移到方程解的存在唯一性上。证明方程解的存在唯一性通常有三种方法,第一种是Ascoli-Arzela引理和Schauder不动点定理;第二种是压缩映射原理或逐次逼近法;最后一种是优级数法。使用压缩映射原理和优级数法证明方程解的存在性的同时,唯一性也可以得到相应的保证。现今,各国数学大师都将注意力集中在如何完善动态规划应用问题的条件以及求解方法之上。本文主要研究的是源于动态规划的泛函方程在不求出具体解的前提下,研究解的存在唯一性问题,以下为具体的研究内容。文章结构如下:第二章,主要研究单过程变量的上、下确界型的四类泛函方程解的存在唯一性问题。从泛函方程的建立到定理条件的设置都有着一定的创新之处。本文将求解泛函方程解的问题都转化成求解不动点的问题进行解决,主要采用两种证明方法:一种方法是在证明过程中,构造巴拿赫空间中的一个连续映射,通过映射的反复迭代证明该映射是非扩张的自映射,进而由不动点定理证明解的存在性;另一种方法是采用单调迭代技术,先构造函数列,其次证明该函数列单调有界,从而收敛,最后证明收敛列的极限点即为不动点。第三章,主要研究多过程变量的任意确界嵌套型泛函方程解的性质。本章讨论的泛函方程类型更为复杂,随着引入过程变量的增多,计算量也随之增大,处理方法也相应作出了调整。如,为了克服迭代困难,相应的对定理成立的不等式条件进行添加,更改或删减,从而得到了相对较为完善的结果。
其他文献
无网格方法之所以能成为国内外学者的研究热点,主要是因为:在无网格方法中,应用的试函数不以网格为基础。所以在处理结构超大变形问题、流固耦合和自由表面流动等相关问题时就体现出它的优越性。最小二乘配点法与径向基函数配点法有很多相似的地方,又有它独特的优点。它保留了径向基函数配点法的一些优点:不需要对研究区域进行网格剖分、重构,从而也减少了大量的数据准备工作;同时也克服了径向基函数配点法的一些不足,因为它
本文研究如下形式的高阶非线性中立时滞微分方程的可解性:其中n,m,l∈N,τ>0,函数以及limt→+∞fj,(t)=+∞.应用Krasnoselskii不动点定理和Schauder不动点定理,本文证明了上面这个微分方程分别在以下七种情况下的不可数多个有界非振动解的存在性:(6)c(t)=1,t≥t0;(7)c(t)=-1,t≥t0.这些情况的讨论使得本文的研究更加全面,同时扩展和补充了许多前人的
近年来,对于源于多目标决策过程的动态规划的泛函方程在某种特定条件下解的存在性,唯一性以及迭代逼近的研究越来越广泛。人们通过对其基本形式下的泛函方程的解的存在性,唯一性以及迭代逼近的学习与研究,不难发现,对于泛函方程的研究可以不必局限于它的基本形式。在结合之前对于基本形式的泛函方程的研究成果的基础上,本文利用不动点定理以及新的组合性思维,将其基本形式进行组合改写,研究了三类更加复杂的泛函方程,并进一
众所周知,对纽结和链环进行合痕分类是纽结理论中的一个核心问题,其中纽结和链环对应的各种类型的不变量是对纽结和链环进行合痕分类的重要工具.常用的纽结与链环不变量主要有纽结的琼斯多项式、亚历山大多项式、桥指标、超桥指标等等.通过对纽结理论的研究不难发现,纽结和链环的棒指标也是对纽结和链环进行合痕分类的一个重要不变量,并且它与纽结其它类型的合痕不变量之间存在着很多重要的联系,这些联系为我们利用纽结对应的
利用传统方法(如有限元法)在求解地下水问题时过程中,都需要预先定义一些网格节点,且网格的生成过程随着空间维数的增加而难度变大,在生成网格过程费时、费力,成本较高。为了处理传统方法不能解决的问题,无网格法被一些专家学者提出,它是最近一些年来被发现和研究的新的模拟方法,该方法的原理是应用一组不构成网格的在域及其边界上离散分布的节点来近似表示实际问题的区域及区域边界,通过这些离散分布的节点来模拟出一个近
具有概率约束的随机优化问题已广泛地应用到实际问题中,如供应链管理,水资源管理,风险优化等。因此,该类问题在随机优化领域具有重要的理论意义和应用价值,成为该领域倍受关注的研究热点之一。由于概率约束函数通常是非凸的并且非光滑,在求解上有一定的困难,有效的方法多集中于凸近似方法。本文旨在研究基于对数指数函数的概率约束优化问题的光滑化方法,建立相应的光滑近似问题,提出了求解光滑近似问题的序列凸近似及样本样
本文引进和研究了如下动态规划中提出的多阶段决策过程的一类泛函方程其中λ,μ∈[0,1]是常数且满足λ+μ≤1和m∈N,opt代表上确界或下确界,x,y分别代表状态量和决策量,ui,vi,wi,pi,qi,ri:S×D→R是映射,ai,bi,ci:S×D→S代表过程的变换,其中i∈{1,2,…,m},f(x)代表初始状态为x的最优返回函数。本文应用Banach不动点定理和Mann迭代方法对上述泛函方
具有机会约束的随机优化是随机优化领域的一个具有重要理论意义和应用价值的研究课题,许多有重要价值的实际问题均属于概率约束问题,该类问题通常是非凸的且非光滑的,有效的求解方法多集中于凸近似方法。本文旨在研究基于Sigmoid函数的概率约束优化问题的光滑近似,建立相应的光滑近似问题,提出了求解光滑近似问题的样本样本均值近似方法。主要研究内容概括如下:第一章综述了本文的研究背景,列举了与本文研究相关的概率
本文基于非线性连续介质力学的有限变形理论,研究了由不可压缩的neo-Hookean材料组成的双矩形橡胶圈在端部轴向压缩载荷作用下的有限变形问题.首先,针对上述的问题,在假设沿着轴向橡胶圈的横截面在变形后仍然是平面且垂直于轴线,并且结构在变形过程中是拟静态的情形下,建立了相应的数学模型,然后利用逆解法和材料的不可压缩条件求得了问题的隐式解析解,最后通过数值模拟得到了一些有意义的结论.主要的工作如下:
目的 :研究防跌倒护理措施在老年患者中的应用,对护理效果进行对照分析,明确防跌倒护理的应用价值。方法 :使用对照分析法分析文中统计资料,资料来源于甘肃省某职业中等专业学校某次校外实践教学中的老年患者,总计82例,分为对照组与观察组。对照组有40例老年患者,观察组有42例老年患者。对照组使用了常规护理方法,观察组则重点强化防跌倒护理,比较不同护理方式下患者跌倒不良事件发生率,并对患者满意度评分进行比