【摘 要】
:
区块链技术是一种分布式账本技术,汇集密码算法、分布式数据存储、博弈共识算法等多种技术于一体,具有去中心化、去信任、不可篡改等特点。2014年,比特币在去中心模式下令人惊叹地稳定运行五年后,其背后的核心技术——区块链(Blockchain)被揭示。从此,区块链技术得到越来越多的关注,并迅速应用到各个领域。但是,由传统技术实现的区块链早期解决方案远不能够满足实际应用需求,区块链核心技术亟待创新与突破。
论文部分内容阅读
区块链技术是一种分布式账本技术,汇集密码算法、分布式数据存储、博弈共识算法等多种技术于一体,具有去中心化、去信任、不可篡改等特点。2014年,比特币在去中心模式下令人惊叹地稳定运行五年后,其背后的核心技术——区块链(Blockchain)被揭示。从此,区块链技术得到越来越多的关注,并迅速应用到各个领域。但是,由传统技术实现的区块链早期解决方案远不能够满足实际应用需求,区块链核心技术亟待创新与突破。为此,区块链技术探索者提出分片、侧链、状态通道等多种扩容方案。其中分片技术被认为最有希望在不降低去中心化程度的前提下,有效解决可扩展性问题,实现区块链技术大规模落地应用。但是,区块链网络中的节点因设备、网络环境等因素,存在较大的性能差异,它们随机分配到各个分片后,可能导致各分片间的节点验证能力差异较大;同时,随机分配的交易可能在各个分片间形成的负载也不均衡。于是,个别分片可能因负载太大、分片内节点的验证能力较弱,而不能及时完成分片内交易的验证和处理。目前,分片间负载不均衡的问题尚未在全球公有链中得到有效解决。本文根据分片间节点与交易的分配特点,分析了分片间负载失衡情况,探索性地提出一种分片间负载均衡的多轮验证方案:在每轮验证后,根据各分片未验证交易数确定剩余负载,确认个别分片的过载情况,进而在下一轮验证中通过调整验证节点,增强分片的验证能力。每次交易验证完成后,根据节点验证交易的能力进行节点评级,并依据各分片剩余负载情况,调整性能较高的节点到负载较大的分片进行下一轮验证,进而实施分片处理能力与交易负载不断匹配的均衡化验证。本文在实验室环境下进行模拟实验,从交易验证率、平均出块时间、单个分片交易处理能力和平均交易处理能力四个方面,对采用本文分片间负载均衡的多轮验证方案的MRV-Elastico(Multi-round Verification Elastico)分片方案和Elastico分片方案进行对比。实验结果表明,本文方案能在保证系统稳定性的同时,有效提高交易验证率和区块链系统的交易处理能力,由此验证了本文方案的合理性与可行性。
其他文献
近年来,为了解决图像相关性强和冗余度高等问题,基于混沌理论的图像加密成为了一个热门的研究课题。另一方面,随着3D打印的兴起,基于混沌理论的三维模型加密的研究也迫在眉睫。且现有的三维模型加密存在着加密过程复杂,加密速度慢等问题,故本文提出了一种基于混沌理论的三维模型加密算法。另一方面,基于现存的混沌图像加密算法所存在加密效率过低和密钥敏感性较弱的等问题,本文分别提出了两种基于混沌理论的图像加密算法。
当前,陆上环境目标检测技术的发展已经趋于成熟,在检测速度和精度上都有了较大的提升,而水下目标检测的相关研究则进展缓慢,其主要原因有以下两点:首先,不同海域、不同深度、不同时间以及不同浑浊度状态下采集到的图像风格差异较大;其次,用于目标检测训练任务的图像需要预先进行人工标注,而人工标注不仅费时费力,长时间持续标注也可能会由于主观因素导致出现错标和漏标等问题,这些“问题数据”将会直接影响训练出的目标检
随着我国对外贸易总量的飞速增长,港口的集装箱吞吐量呈现井喷趋势,如何在满足一定填充率的前提下,实现快速装箱,成为亟待解决的问题。集装箱三维布局优化问题本质上属于NP-Hard问题,其解空间过于庞大,难以找到最优解,且当待装载货物种类较多(即异构性较强)时,求解速度较慢。针对此问题,本文提出一种多策略动态融合启发式算法(DHHA),在保证填充率的前提下实现快速求解。首先,考虑现实约束条件,建立装载模
近些年,城市道路网络中基于车辆等移动对象所产生的轨迹数据的相关研究在智能交通领域掀起了一片研究热潮。轨迹异常检测作为路网轨迹模式挖掘的一个热门研究课题之一,其主要目的是识别出轨迹数据中异常但有价值的数据信息,对路网中欺诈和不良事件的监测具有重大意义。现如今,大多数针对路网的轨迹异常检测算法都倾向于采用基于密度或基于距离的检测方法,并未考虑时间信息对异常轨迹检测结果的影响;并且在检测过程中,通常选择
船舶交通管理(Vessel Traffic Service,VTS)系统是集雷达、通信、计算机网络、信息处理技术于一体的多技术融合与集成的系统,近20年来我国在沿海和长江各港口引进国外的技术建设了大量的VTS,随着水上交通的不断发展、国家信息安全的加强和用户对系统运行效率的提高以及智能化的需求,对VTS系统进行国产化已经势在必行。目前的VTS系统对于船舶的识别、交通安全指挥、风险提示和告警、船舶进
多媒体数据是网络大数据的一种主流表示形式,并呈现出海量、高维、异构等特性。如何在大规模多媒体数据中,快速、准确地检索出目标数据是计算机研究领域的一个基本问题,其解决方案被广泛地应用于诸如物体检索、身份识别、三维重建等场景中。不过,高效的近邻查询一般需要借助数据的提前索引,而多媒体数据的高维特性使得多数传统索引技术失效,并导致精确近邻的查询效率急剧下降。近似最近邻检索技术脱颖而出,逐渐成为解决上述问
生物医学事件抽取以结构化的形式展示了海量生物医学文献中生物分子之间细粒度的复杂交互关系,为科研人员了解生物机理和攻克医学难题提供了重要依据。一个完整的生物医学事件由触发词和事件元素组成。触发词引起了整个生物医学事件的发生,并且决定了生物医学事件的类别。事件元素是生物医学事件的重要组成部分,在生物医学事件中扮演着重要的角色。因此,本文紧紧围绕生物医学事件抽取中的两个关键问题——触发词识别和事件元素检
程序开发人员在软件开发的过程中往往会遇到许多技术问题,提出具体问题并从在线专家那里得到有针对性回答的方式是当前最常用的方式之一。但是程序开发人员所提问题回复时间的长短取决于很多因素,包括问题的表述方式,问题表述的细致度,问题类别的数量,在线并对问题感兴趣的用户数等等。相关的研究工作集中在预测问题是否会在给定的时间间隔内被回复,而没有预测出其具体的回复时间。准确高效地预测问题的回复时间能够让用户对其
软件缺陷往往仅分布在少数代码中,但是这些少量的软件缺陷会给软件系统安全运行带来潜在的严重威胁。软件缺陷的不平衡分布,严重制约了软件缺陷预测(SDP)的准确度。因此,如何在软件缺陷预测中解决缺陷分类的不平衡分布问题,进而提升预测精度,是软件测试中一个重要问题。针对上述问题,本文提出一种基于合成少数类过采样技术(RSMOTE)的数据不平衡处理方法(RSMOTE-Based Data Imbalance
高光谱遥感技术能够提取地物的精细光谱特征,在目标识别方面拥有不可替代的优势。近年来随着高分五号等遥感卫星的发射,高光谱遥感技术得到了突飞猛进的发展,其中高光谱分类是指对目标图像的每一个像元划分出唯一的地物类别,在精准农业、地质探测及军事检测等领域都有着广泛的应用。相比于传统的分类方法,卷积神经网络(CNN)为代表的深度学习方法能获得更具判别性的特征表示,被成功用于高光谱分类领域。然而,由于高光谱遥