【摘 要】
:
由于人类印染工业的发展和对自然环境保护的忽视,印染工业排出的染料废水对自然水体造成极大破坏。为了降解有机染料,研究者们开发了光催化以及压电催化技术等利用绿色能源的先进催化技术。虽然这些技术展现了降解有机染料的潜力,但仍存在载流子容易复合及迁移效率低等缺陷,造成其催化效率有待提高。为解决这些缺陷,研究者们将光催化技术与压电催化技术结合起来,提出了压电光催化技术。由于压电光催化技术具有可协同利用光能与
论文部分内容阅读
由于人类印染工业的发展和对自然环境保护的忽视,印染工业排出的染料废水对自然水体造成极大破坏。为了降解有机染料,研究者们开发了光催化以及压电催化技术等利用绿色能源的先进催化技术。虽然这些技术展现了降解有机染料的潜力,但仍存在载流子容易复合及迁移效率低等缺陷,造成其催化效率有待提高。为解决这些缺陷,研究者们将光催化技术与压电催化技术结合起来,提出了压电光催化技术。由于压电光催化技术具有可协同利用光能与机械能等绿色能源的优势,实现了光生载流子的高效分离和迁移,正逐渐受到重视。压电光催化技术的核心是具有压电效应的半导体材料,由于目前压电光催化的研究尚处于起步阶段,仅有少数几种铁电材料(如BaTiO3、KNbO3等)取得了一定进展,但较大的带隙(>3.2e V)限制了这些材料催化性能的进一步提升。铌酸银(AgNbO3)具有无铅无毒以及较小的带隙(~2.8 e V)等优点,是压电光催化的理想材料。本研究针对AgNbO3的合成和铁电性调控等开展研究,系统探索其压电光催化降解罗丹明B(Rh B)的性能,为设计高效压电光催化剂及其环境应用提供了新思路。本研究的主要内容如下:(1)系统探讨了极化工艺对AgNbO3粉末压电光催化性能的影响。研究发现,提高极化电场和保压时间可以有效地增强AgNbO3的压电光催化性能,当极化电场达到20 k V/cm保压时间达到2 h时其压电光催化性能达到最大值,在60分钟内实现对91%Rh B的脱色,相比于未极化的AgNbO3其降解率提升了11%。稳态荧光光谱以及铁电测试分析表明,极化工艺提升了AgNbO3的内建电场,实现光生载流子的有效分离,从而提高了AgNbO3对Rh B的降解能力。(2)采用水热合成技术合成AgNbO3粉末并探索其压电光催化性能。研究表明,水热合成的AgNbO3相比传统固相法具有更高的压电光催化降解Rh B性能,其速率常数为0.074 min-1,为固相反应法的2.8倍,其优异的压电光催化性能可能与较高的自发极化强度、暴露的(001)高能晶面、较小的带隙和较小的颗粒尺寸有关。(3)基于铁电工程调控策略,在AgNbO3中引入K+离子,其压电光催化性能在改性后得到大幅提高。研究表明,K+掺杂后可以稳定AgNbO3的铁电相,并形成Ag/AgNbO3Schottky异质结。压电光催化测试中,K0.2Ag0.8NbO3(20%KANP)实现了0.131 min-1的速率常数,分别为仅在光照条件和超声光照协同条件下AgNbO3的7.8和4.7倍。同时,该材料还表现出良好的循环稳定性和耐酸碱性。研究结果表明,铁电性与肖特基结的协同效应是产生优异压电光催化活性的关键。
其他文献
目前迫切需要开发具有高能量/功率密度的材料,以满足便携式电子产品、电动汽车和大型储能设备日益增长的需求。超快的充电/放电速率和超高的功率密度使得介电电容器成为现代电气和电子设备,尤其是脉冲电源系统中必不可少的组件。其中,陶瓷介电电容器相对于聚合物介电电容器有着耐高温和介电常数高等优势。铅基陶瓷具有良好的储能性能,但其毒性引起了人们对其在消费类应用中使用的担忧。因此,有必要开发具有优异综合性能的无铅
本研究工作,制备了Mg-Sn-Pr三元系500℃平衡态和富Mg端的铸态样品,采用X射线衍射分析(XRD)和显微结构及成分分析(SEM-EDS)等方法,对平衡态合金和铸态合金进行了实验检测。测定了Mg-Sn-Pr三元系500℃等温截面及富Mg端液相面投影图,为新型镁合金的发展补充了重要的相图数据。在500℃下,观察到五个三元化合物。证实两个被报道过三元相τ1(Mg Sn Pr,I4/mmm,t I1
能源结构调整是中国能源发展面临的重要任务之一,目前我国迫切需要创新改进的储能材料,以更有效地应对化石燃料的有限供应,并有效利用可再生能源。富锂氧化物正极材料因其高能量密度受到广泛关注,但是充放电过程中不可逆的晶格氧损失和尖晶石相变引起的容量衰减、循环稳定性不佳等不足限制了应用。本论文采用sol-gel—高温固相法制备Na或Fe掺杂的纳米层状富锂氧化物正极材料,运用XRD、RAMAN、SEM、TEM
采用搅拌摩擦焊接工艺焊接的铝合金电池托盘是新能源汽车电池的承载件,整体质量偏大,具有极大的轻量化空间。随着新能源汽车轻量化对材料和其性能要求的提升,电池托盘所用的材料及搅拌摩擦焊接工艺已不能满足托盘轻量化的性能需求。本文在电池托盘用6005A铝合金的基础上,采用JMat Pro热力学模拟与第一性原理计算相结合优化6005A铝合金成分,研究不同含量的La(0.1 wt.%,0.3wt.%,0.5 w
地质聚合物是一种可持续发展的新型无机凝胶材料,具有强度高、耐腐蚀性强和吸附性能好等优点,在一定制备工艺条件下可转化为沸石分子筛应用于水污染处理。地聚物沸石微球结合了两者的优势,具有更大的孔隙率与比表面积,有利于增加其去除废水中重金属离子的效果,是一种低成本、低能耗、高效率的环境友好型吸附剂,有望实现其在处理重金属离子废水的工业化应用。本论文以偏高岭土、纳米二氧化硅和氢氧化钠为原材料,通过分散-悬浮
Al-Zn-Mg-Cu系合金因为密度低、强度高、耐腐蚀性好的特点,已经广泛的应用于航空航天,武器制造等领域。但是Al-Zn-Mg-Cu系合金存在摩擦系数高、耐磨性差的缺点,限制了其在部分领域进一步的应用和发展。目前大多数的研究仍处于通过优化热处理工艺来改善合金的性能,但是受到合金元素在铝基体中极限固溶度的限制,这种强化方法是有限度的,因此一种形变+时效相结合的处理方式逐渐受到研究者的重视。本文通过
化石能源的过度消耗和随之带来的环境污染问题,严重影响了人类的工作和生活。氢气作为一种具有高能量密度的可再生清洁能源引起了越来越多科研工作者的关注。在各种制氢技术中,电催化水分解能够实现大规模、可持续地生产高纯度的氢气和氧气。其中高效、稳定、低成本的电催化剂是电解水制氢技术发展的关键因素。本文以非贵金属钴基材料为主要研究对象,本着降低成本、节约资源的原则,制备了一系列钴基/泡沫碳复合材料电催化剂,并
钌作为一种稀有过渡金属,具有特殊的物理化学性能,在电子工业、合成氨以及药物生产等领域有着广泛的应用。随着社会的发展,对于钌的需求正日益增大。然而我国相应的矿产资源严重匮乏,通过开采矿产能获得的钌十分有限,供需矛盾十分突出,因此人们开始考虑从二次资源中分离再回收钌。每年从核电站排放出的乏燃料中会蕴含大量的钌。通过硝酸溶解这些钌将从乏燃料转移到高放废液中,使其能够被回收再利用。然而,由于钌在硝酸体系中
近年来,随着世界工业化的不断进步,废水中残留的抗生素含量越来越高,抗生素中的四环素类抗生素的污染情况最为严重,这种污染物会对食物链和人体健康造成严重危害。传统处理方法一般是采用生物处理技术的方法,但是对抗生素的去除效率较低,电化学法和超声波降解的高能耗导致高运行成本,吸附法效率低且不能完全去除四环素。相较于这几种方法,研发出新型的光催化剂材料是近年来的研究热点,半导体光催化剂具有光催化性能强,光催
光催化是一项有望能同时解决能源危机和环境污染的技术,但是传统的半导体(如Ti O2、Zn O等)存在光响应范围小、光生电子复合率高等缺点,限制了它们在实际中的应用。开发在可见光范围内能激发载流子且具有高量子效率的光催化剂,是推动光催化技术发展和应用的关键。近年来,具有可见光响应、性能稳定、价格低廉的石墨相氮化碳(g-C3N4)成为光催化领域的研究热点,但未经改性的g-C3N4还存在光催化活性不高的