基于钻进多特征的煤岩识别方法研究

来源 :重庆大学 | 被引量 : 0次 | 上传用户:haizhi19841029
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
智能钻进技术是进行煤矿瓦斯防治无人化和提高煤矿钻机设备智能化的基础,而煤岩识别又是智能钻进技术的关键环节。传统煤岩识别主要依靠司钻人员通过钻速和返渣等特征对所钻岩层性质进行判别,自动化程度低,劳动强度高,识别精度严重依赖于经验,更重要的是煤矿灾害随时可能威胁到现场司钻人员的生命健康。为此,本文在国家重点研发计划“井下瓦斯防治无人化智能钻进技术”的支持下,开展煤矿钻机智能钻进过程中煤岩识别方法研究,其主要研究内容如下:(1)建立钻柱系统钻进破岩仿真模型。为了在钻进过程中得到不同煤岩层特征,基于基本假设和岩石本构模型,建立钻柱系统钻进单一煤岩层仿真模型。同时,为了反映煤矿井下地层实际分布形式和构建验证煤岩识别模型泛化性的测试集,建立复合煤岩层钻进仿真模型。(2)进行钻柱系统钻进破岩机械比能和钻进速度特征分析。通过分析PDC钻头钻进破岩过程,推导了钻进参数与所钻煤岩层物理力学属性之间的公式。基于此,分析了单一煤岩层钻进仿真结果,研究机械比能和钻进速度在不同钻进参数下钻进不同煤岩层的变化规律。同时,对比钻进单一煤岩层和复合煤岩层仿真结果,发现两者的机械比能和钻进速度变化规律是相似的。因此,复合煤岩层特征可以作为数据测试集,以此验证煤岩识别模型的泛化性能。(3)进行钻柱系统钻进破岩振动信号特征分析。通过分析钻柱系统振动信号产生原因,发现钻柱系统钻进松软煤层时,振幅小且钻进平稳,钻进硬岩层时,振动剧烈且容易跳钻。综上,对振动信号进行时域和频域分析,时域上三种煤岩层的峰值和波形因子等指标具有一定的区分度,频域上煤层有明显的特征峰,砂岩层在高频段分布更为密集,幅值更大。由此,可提取主频和频谱集中程度等频域特征与时域指标一同作为煤岩识别模型的数据集。(4)开展多特征煤岩识别模型对比研究。根据特征数据离散且量级相差较大的特点,选取无需数据前处理的算法(决策树、随机森林和梯度提升决策树)构建煤岩识别模型并进行对比研究。训练结果显示,基于机械比能的识别模型对煤层和泥岩层识别不准确、基于振动信号的识别模型对泥岩层和砂岩层识别不准确,且两者对单一煤岩层的识别准确率低于85%,对复合煤岩层识别准确率低于80%。针对单特征模型识别准确率低等不足,建立多特征(钻进速度、机械比能、振动信号)识别模型,训练结果显示,多特征模型比单特征模型在单一煤岩层识别准确度上提高了12%,且识别复合煤岩层的准确度达到了86.7%,说明该模型具有一定的泛化性,适用于煤矿井下不同分布形式的煤岩层。同时,对比模型评价指标,发现基于随机森林算法的多特征模型煤岩识别效果好于决策树模型和梯度提升决策树模型。
其他文献
增程式电动汽车作为新能源汽车的一种类型,具有结构简单、续航里程长、排放小的特点。但在实际运行过程中,发动机运行温度会影响整车能耗,且发动机运行温度与发动机启停和环境温度密切相关,此外,发动机启动和因环境温度产生的热需求也会带来额外的能耗。能量管理策略作为新能源汽车的关键技术之一,其作用是在发动机和电池之间合理的分配功率,是提高整车经济性重要手段。针对上述问题,本文开展了CS(Charge Sust
学位
高功率大扭矩齿轮传动装置被广泛应用于航空发动机、舰船推进系统、矿山运输机械等大型机械设备,因其结构复杂,传递功率高、扭矩大,相比其他传动装置更容易引发因箱体本身刚度不足和支撑刚度不匹配所带来的箱体变形与齿轮啮合性能恶化,进而造成齿面磨损、胶合、大的振动烈度、噪声等。在设计高功率大扭矩齿轮传动装置的齿轮箱时,传统的设计方法往往是对箱体壁进行加厚,虽然这样能使齿轮箱的静态和动态性能得到有效改善,但是却
学位
自工业革命以来,石油等不可再生能源的大量消耗导致了大气中温室气体浓度显著增加,能源危机和环境问题日益严重。纯电动汽车等新能源汽车逐渐取代传统燃油汽车已成为必然趋势。锂离子电池作为纯电动汽车的核心,尽管目前应用广泛,但仍存在能量密度相对不足,充电困难且时间长导致相对续驶里程短,易引起里程焦虑,电池组容量衰减老化后更换成本高等问题。提升电池性能是解决这些问题的根本途径,而研究电池机理是电池性能提升的基
学位
经济的快速发展不断刺激着人们日益增长的出行需求,交通运输也成为了能源消耗与温室气体排放的主要来源之一。城市信号交叉口有着维持交通秩序,指挥交通运行的功能,但交通信号冲突会引起交通流的中断,车辆受到信号交叉口的影响处于频繁加减速、怠速停车等高油耗高排放状态。因此,如何针对城市交通流进行合理的车速规划,提高道路通行能力,减少汽车燃油消耗与排放,具有重要的实践意义。在此背景下,本文以智能网联环境下的多模
学位
齿轮传动系统作为机械装备的核心组成机构之一,是决定整机性能的主要装备,而充分润滑是确保齿轮传动系统正常运转的必要条件。现代齿轮传动系统向高速重载方向发展,传动系统对润滑性能的要求也逐渐提高,恶劣的工作环境会使齿轮啮合界面无法形成有效油膜,导致传动效率和可靠性下降。因此,有必要对高速重载齿轮啮合界面进行混合润滑仿真,以准确获取啮合界面混合润滑特性参数,提出优化建议,确保齿轮传动系统处于良好的润滑状态
学位
柔性薄膜因具有轻质、可折叠等特点,被广泛的应用于航天工程领域;利用柔性薄膜材料构成的空间充气结构成为了目前广为关注的一种重要航天工程新型空间结构。局部收到压力后,薄膜易发生屈曲并形成褶皱。航天工程中,充气结构的褶皱被认为是一种失效现象。对这种失效现象进行的力学研究有利于提高空间充气结构的使用性能。本文以此项需求为研究背景,开展以下研究:充气柱轴压失稳现象的散斑实验,以及基于Stein-Hedgep
学位
双摆是一种常见的力学模型,是由两个简单摆耦合而成、最简单的二自由度系统。双摆系统在运动过程中,第二摆的运动轨迹通常是杂乱无章、毫无规律的,在初始参数确定的情况下,仍然显示出高度的复杂性,而确定系统的内在随机性是混沌的特征之一。然而,有研究表明双摆系统并非一直存在混沌性,在某些特殊的参数条件下,第二摆的运动轨迹也可以是拟周期的,因此,确定双摆系统混沌的参数条件对双摆混沌性研究有重要的意义。双摆虽然是
学位
乘员舱和电池热管理对电动汽车来说尤为重要,它们通常通过空调系统实现。相比于夏季,冬季低温工况下,热泵空调系统的能耗对SOC减小、续航里程降低的效果更为显著。因此,如何为热泵空调系统设计一个智能控制策略,在保证乘员舱内环境舒适和电池工作正常的同时尽可能减少系统能耗是一大研究热点。为此,本文针对冬季低温环境下,对基于热泵空调系统的乘员舱和动力电池热管理的控制策略设计展开了研究,主要研究内容及成果如下:
学位
自动驾驶汽车安全性测试验证是自动驾驶汽车开发的重要环节,测试场景则是自动驾驶汽车安全测试验证的重要基础,选择合理有效且覆盖率高的关键场景能够提高测试的效率和质量。目前企业和车检机构广泛使用的测试场景大多来自于真实道路采集的驾驶场景,这些场景虽然可以真实反应交通道路情况,但其中非关键场景数量占比大,关键场景的数量占比少,覆盖率不够高,不能满足自动驾驶汽车的安全性测试验证要求。本文针对高速公路匝道口合
学位
近年来,轨道交通在各国交通运输行业中所占比重越来越大,在方便人们出行的同时也导致了燃油消耗持续增加,为了发展节能环保的轨道交通,新能源列车越来越受到青睐。本文设计了一款油电混合动力列车,并对混合动力耦合机构以及基于综合效率优化的能量管理策略进行了详细的介绍,主要内容如下:(1)根据单行星排的连接特点选出了输入分配式和输出分配式两种功率分流构型,然后通过分析传动比的选择范围以及电功率与机械功率之比选
学位