论文部分内容阅读
毒死蜱是水稻常用的杀虫剂品种之一,也是稻田退水中主要农药成分之一。同时,受政策导向和市场的影响,我国苏打盐碱地水田开发面积不断扩大,稻田退水量增大,退水中的氮磷营养盐、盐离子和毒死蜱等污染物,对下游水体和湿地生态系统造成很大影响。本研究运用潜流人工湿地(Subsurface flow constructed wetlands,SFCWs)处理盐碱化稻田退水中毒死蜱及其有毒水解产物3,5,6-三氯-2-吡啶酚(TCP)。在筛选基质的基础上,构建SFCWs,研究了毒死蜱及TCP在潜流人工湿地中的时空变化,评估了处理效果,识别了影响因素,探讨了降解机理,研发出强化技术,并得出以下结论:(1)六种基质的等温吸附最大吸附量由大到小依次为:蛭石>Fe-C>>火山岩>炉渣>陶粒>砾石。炉渣是最佳的人工湿地基质,蛭石和Fe-C更适用于对基质的强化。毒死蜱在植物各组织的含量关系为:根>茎>叶。三种植物对TCP的吸收降解效果为香蒲>美人蕉>芦苇。美人蕉能够同时吸收和代谢毒死蜱与TCP,是理想的人工湿地植物。(2)人工湿地可有效去除进水中的毒死蜱,大部分毒死蜱在人工湿地运行后的最初2 h被去除,24 h出水中毒死蜱去除率大于90%,8 d毒死蜱去除率均大于99%。人工湿地上层水的毒死蜱浓度略低于下层。微生物降解至少去除约66%的毒死蜱,碱性条件下的化学水解贡献约20%的毒死蜱去除率,湿地植物对毒死蜱的吸收量不足4%,约有6%-10%的毒死蜱被基质所吸附。TCP浓度在毒死蜱降解初期迅速上升,在水力停留时间(HRT)1-2 d达到浓度最大值,随后缓慢下降,在HRT 8 d时均降至约2μg L-1。炉渣可以显著提高人工湿地对TCP的去除效果,同时湿地内部的微生物降解是TCP降解过程的重要途径。(3)随着毒死蜱浓度的升高,毒死蜱和TCP的降解均受到抑制。氮磷营养盐的加入显著抑制了毒死蜱的降解(P<0.05),TCP的降解并未受到显著影响。盐离子浓度的升高加快了毒死蜱和TCP的碱性水解速率。(4)Fe-C强化和液体菌剂单次投加强化是较理想的基质优化和微生物优化措施。并且降解菌剂加入后仅在4 d内就将毒死蜱和TCP的彻底降解。变形菌门的相对丰度在50%水平以上,其可能是毒死蜱和TCP降解的主要降解菌门。Fe-C的加入对微生物群落结构影响较大,硫杆菌属(Thiobacillus)、噬酸菌属(Acidovorax)、水小杆菌属(Aquabacterium)和Noviherbaspirillum菌属是Fe-C处理组的优势菌属,其可能参与到铁碳微电解的相关铁氧化过程或能够在微电解环境下对水体中污染物进行有效降解,使其在Fe-C微电解环境下丰度升高。(5)本研究综合所得结论提出了潜流人工湿地降解稻田退水中毒死蜱及TCP的强化技术。该技术可显著提高人工湿地对毒死蜱和TCP的处理效果,大幅缩短水力停留时间至4 d。强化技术将对治理毒死蜱稻田排水污染提供十分重要的理论基础。