【摘 要】
:
目前碳纤维增强尼龙6复合材料因其高比强度、自润滑性等特点得到广泛的应用,但碳纤维表面光滑且疏水,与尼龙产生的弱界面影响材料性能,制约着进一步的开发与应用。大量研究通过物理和化学的方法对纤维表面改性提高了材料的界面剪切强度(IFSS),增强了机械性能。但仍存在改性方法复杂、生产效率不高、改性增强效果难以预测等问题,因此碳纤维的改性工艺与复合材料的性能预测需要进一步研究。本工作通过电还原接枝的方法,在
论文部分内容阅读
目前碳纤维增强尼龙6复合材料因其高比强度、自润滑性等特点得到广泛的应用,但碳纤维表面光滑且疏水,与尼龙产生的弱界面影响材料性能,制约着进一步的开发与应用。大量研究通过物理和化学的方法对纤维表面改性提高了材料的界面剪切强度(IFSS),增强了机械性能。但仍存在改性方法复杂、生产效率不高、改性增强效果难以预测等问题,因此碳纤维的改性工艺与复合材料的性能预测需要进一步研究。本工作通过电还原接枝的方法,在碳纤维表面引入了萘基化合物,并进一步接枝氨基碳纳米管,然后经过模压工艺制备纤维增强尼龙复合材料。通过纤维脱粘和拉伸测试评价界面和材料性能,分析不同改性方法增强效果和探索适合的成型参数,制备高强度的复合材料。建立IFSS与强度的关系,并根据实验数据完善单向纤维复合材料的强度预测模型,从模拟的角度分析材料IFSS与拉伸强度的关系。研究得出如下结论:(1)成功在碳纤维表面进行电接枝萘基重氮盐和氨基化碳纳米管,使IFSS最高提高了112.9%。相比于一般化学接枝,该方法能够无损改性,增强效果更强,效率更高,反应可控。(2)优化材料制备工艺,在10 MPa下模压成型的长纤增强复合材料,平衡了低压纤维浸润不足,高压纤维变形或损坏的问题。得到的最高复合材料拉伸强度为573.1 MPa。并建立了复合材料IFSS与拉伸强度的线性关系,发现存在一个IFSS(58.64 MPa)时有最高的拉伸强度(573.1 MPa),低于该IFSS,强度随IFSS提高而增大,超过该值后,材料变脆,强度下降。(3)在单向纤维复合材料的拉伸强度预测模型中加入IFSS值对强度的影响,预测结果与实验结果误差小于5%,并通过模拟材料破坏过程分析了IFSS与强度间的关系,可以为优化纤维改性和实际生产提供指导。
其他文献
随着电子商务快速普及,网络购物已成为人们消费的必经渠道。网络商品评论的情感极性是获取顾客对该种类商品反馈的最直接方式,商家可以通过分析评论洞察顾客体验,优化产品,调整销售计划。与机器学习、规则学习方法相比,深度学习无需人为构建和提取详尽的文本规则与语义特征,能自底向上地提炼文本特征,资源节约效应显著。在当前商品评论情感分类任务中,评论文本与情感词典的数量、质量一直是研究难点,现有算法也存在分类效果
栅极组件是离子推进器的关键部件,栅极件间距检测精度决定离子推进器的可靠性,直接影响推进器的比冲与效率,实现离子推进器栅极件层间距精密检测是目前航空航天领域待突破关键技术问题。目前栅极件间距检测方法采用人工接触式检测或插针辅助二维图像检测的方法,检测过程需要和栅极件接触,会对栅极件本身工件造成损伤,影响栅极件的质量,难以满足现代化精密检测高质高效要求。三维点云是解决数字化精密检测的重要手段。为了提高
弹跳机器人具有灵活性、高动态性以及优越的爆发性,且因为它具有优异的跳跃能力和越障能力。所以弹跳机器人适用于火星探索,灾后救援,地形侦查等地形复杂的环境。本文设计的是仿蝗虫弹跳机器人,主要研究内容及成果如下:首先,本文提出了弹跳机器人单腿机构的构型。为实现稳定、可控的爆发式弹跳,弹跳机构应满足起跳后躯干的翻转运动小、足尖运动轨迹为近似直线、足尖运动范围较大、应能实现爆发式驱动等设计要求,据此本文选定
在汽车制造企业中,汽车表面缝隙的尺寸是判断车身覆盖件匹配精度的关键指标。车身覆盖件匹配精度对汽车的外观、性能以及消费者的驾驶体验有着直接或者间接的影响。尽管国外市场上有着先进的缝隙尺寸检测设备,但是其价格太过昂贵,加上现在国内针对车身表面缝隙尺寸检测方法的研究存在较大的局限性,所以目前国内汽车厂商对于缝隙尺寸的检测手段依然以间隙尺、游标卡尺或塞尺等接触式测量方法为主。传统的接触式检测方法不仅容易受
内丝接头作为汽车刹车系统的构成部分,是保证刹车系统有效且稳定制动的关键零件。生产企业对内丝接头出厂前的质量检测有着严格的要求,然而传统的人工检测精度差、漏检高且检测标准一致性难以保证。为此本文针对内丝接头外观缺陷检测的问题,利用机器视觉技术对内丝接头转体完整性检测、凹槽异物检测以及紧固套表面缺陷检测的算法展开研究。主要的研究内容为:(1)在图像采集方面,根据转体、凹槽以及紧固套这三个待检测区域以及
纳米晶金属材料具有高的强度但是塑性却较差,其原因是位错匮乏。纯铜经表面纳米化处理,表面纳米晶展现了大塑性,但是其弹性应变较低,经计算只有0.5%。本课题组前期对马氏体CuZnAl(M)合金进行了表面纳米化处理,制备了邻接相变基体的纳米晶金属复合材料粗晶M/纳米晶α-CuZnAl合金板材,发现马氏体CuZnAl合金表面α相纳米晶的弹性应变(3.2%)显著高于粗晶α/纳米晶α-CuZnAl合金表面α相
与锂离子电池相比,锂硫(Li-S)电池具有成本低、能量密度高(2600 Wh kg-1)、性能优越等优点,是公认的极具发展前景的下一代电池。然而,由于硫导电性差、嵌锂后显著的体积膨胀、可溶解多硫化物(Li PSs)的穿梭效应,以及Li PSs中间体转化缓慢等问题,Li-S电池的商业化一直受到阻碍。目前最普遍的解决方法是利用碳材料在物理上限制Li PSs的穿梭效应,同时以其良好的吸附能力和导电性来提
近年来,随着化石能源等不可再生能源的枯竭,可再生能源的高效利用成为人们关注的重点。在各类可再生能源储能装置中,锂离子电池因其绿色清洁等诸多优点发展迅速。目前,随着各类高容量负极材料的研制成功,制约锂离子电池发展的关键是正极材料的性能。近期,可发生多电子转移反应的金属氟化物正极材料广受关注。在各种金属氟化物中,氟化铁具有理论容量高、成本低等特点。但是氟化铁中的离子价键作用强导致其导电性差,且转化反应
TC4钛合金是一种中强度α+β型钛合金,具有耐腐蚀性好、密度低、比强度高等优点,是应用最广泛的航空紧固件材料。冷镦成形钛合金航空紧固件可以提高生产效率和成形精度,同时降低加工成本。但在室温条件下,TC4钛合金的成形性极差,极易出现断裂现象。目前,热镦成形TC4钛合金紧固件的方法应用广泛,但热镦成形紧固件存在较大温升,影响材料性能。温镦成形TC4钛合金紧固件,不仅效率高、能耗低、成形零件的力学性能良
质子交换膜燃料电池是一种新能源电池,其内部包括流体流动、气体扩散、催化层中化学反应、电池内部温度传递。本文通过使用COMSOL Multiphysics中的二次电流、布林克曼方程、浓物质扩散和固体传热模块模拟质子交换膜燃料电池在电场-流场-浓度场-温度场多场耦合情况下,电池内部物质传递以及电化学性质。本文从以下几个方面对质子交换膜燃料电池进行研究。(1)建立了一个单相非等温直流道质子交换膜燃料电池