论文部分内容阅读
近年来,随着数据传输业务量的急剧增加,对通信的服务质量提出了更高的要求,传统无线光通信(WOC)技术已经无法满足用户对数据速率的高要求。光多输入多输出(MIMO)技术为解决上述问题提供了一种有效手段。但传统光MIMO技术还存在多光束传输导致的信道间干扰强、接收端干扰抵消算法和信号检测算法复杂度大、天线间同步要求高等问题。空间调制(SM)技术作为一种特殊的MIMO技术,同时采用了传统的数字调制星座(即信号域)和激活天线位置(即空间域)来传递信息。因此,可以得到比经典系统更高的频谱效率。同时,由于在每个时隙上只有一条链路负责传输信号,SM避免了信道间干扰问题。因此,近年来在无线通信领域掀起了研究热潮。目前的WOC系统大多采用强度调制/直接检测(IM/DD)方式,这就使得射频通信中采用的SM技术不能直接应用于其中。因此,本论文依据无线激光通信系统的特点,结合L-PPM调制,研究了适合于大气激光通信系统的光空间调制技术,并针对系统中高复杂度的检测问题提出了改进算法。具体如下:(1)针对OSM方案中经典最大似然检测(ML)算法复杂度高的问题,本文将L-PPM调制与OSM技术相结合,利用OSM激光器映射向量和L-PPM脉冲向量构建了具有稀疏特性的发送信号。基于该稀疏特性,采用正交匹配追踪(OMP)算法提出了一种基于压缩感知(CS)理论的光空间调制信号检测算法。仿真结果表明:该方法以少量误码性能损失为代价极大地降低了信号检测的复杂度。同时,由于稀疏性的引入,该方法更适合于具有大规模激光器的无线光通信系统。(2)广义光空间调制(GOSM)结合了OSM和空间复用的优势,有效提高了OSM系统的频谱效率,并且还克服了OSM系统对发射天线数目的限制,但其增加了信号检测的复杂度。因此,针对GOSM技术,引入OB-MMSE信号检测方法,并依据GOSM信号特点对其权值进行了修正,提出了一种适合于GOSM的OB-MMSE信号检测算法,推导了对数正态湍流信道中阈值的选取方法。仿真结果表明:与ML算法相比,所提算法在牺牲较小误码性能的情况下,有效降低了ML算法的复杂度。与MMSE算法相比,虽然所提算法的复杂度略有增大,但其有效地降低了误码率,而且还适用于接收机数目少于发射机数目的系统。