论文部分内容阅读
由于钛、锆及其合金具有优异的生物相容性、较低的弹性模量、较高的比强度、良好的耐腐蚀性等优点,而被作为人体植入器件大量应用于生物医疗领域。因此,开发和研究具有低弹性模量和良好生物相容性的医用合金具有非常大的潜在价值。结合目前生物医用合金的研究现状,本课题分别以Zr和Ti作为基体元素,通过添加不同含量的合金元素进行合金成分体系设计,采用X射线衍射仪、光学显微镜、扫描电镜,力学性能检测以及硬度测试对所设计的合金样品进行相结构、微观组织、断口形貌特征以及力学性能的检测与分析。通过成分优化以及工艺控制,制备出具有较低弹性模量的生物医用合金体系。通过非自耗真空电弧熔炼炉制备不同BN含量的ZrBN合金铸锭。结果表明:铸态ZrBN合金的相主要由α相和ZrB2组成,未检测到其他的相结构。随着BN含量的增加,合金中的ZrB2含量越来越多。除此之外,BN颗粒的添加对ZrBN合金的力学性能影响非常明显。当添加0.5wt.%的BN时,合金的抗压强度、屈服强度、弹性模量和塑性应变值达到最大值,为1311MPa、928MPa、31GPa以及16.71%;而后随着BN含量的增加,合金的抗压强度、屈服强度和压缩塑性随之出现大幅度降低。采用非自耗真空电弧熔炼炉制备不同Mo含量的Ti-xMo(x=10,15,20,25,30)二元合金铸锭。结果表明:铸态Ti-Mo二元合金的相结构主要由β相、α"相和ω相组成。随着Mo含量的增加,合金的相结构的组成亦随之发生转变,即为β(亚稳)+α"→β(亚稳)+ω→β;同时Ti-Mo合金的相变温度Tβ随着Mo含量的增加而降低,β相的稳定性逐渐增强。合金的屈服强度随着Mo含量的增加先增大后减小。当Ti-Mo二元合金中Mo含量为10wt.%时,合金的屈服强度达到最大值441MPa,合金的弹性模量最高为34GPa。采用非自耗真空电弧熔炼炉制备Ti-10Mo二元合金铸锭。将铸态的Ti-10Mo合金加热至950℃后保温30min,而后通过不同的冷却方式冷却至室温;随后对合金进行相同条件的时效处理;时效处理条件为600℃下保温120min后空冷至室温。结果表明:随着冷却方式的改变,合金中β相的转变产物亦随之发生变化。随着冷却速率的逐渐降低,合金的最大抗压强度和压缩应变均随之增加。当随炉缓慢冷却至室温时,合金的抗压强度值为1417MPa,弹性模量为34GPa。采用非自耗真空电弧熔炼炉制备Ti-15Mo合金铸锭,并在室温条件下对Ti-15Mo合金铸锭进行轧制变形加工。随着变形量的增加,合金的抗压强度和屈服强度均随之增加。合金的变形量为42%时,抗压强度和屈服强度分别为1599MPa以及164MPa;当变形量增加到61%时,抗压强度和屈服强度分别为2719MPa以及223MPa,弹性模量为 20GPa。