【摘 要】
:
信息隐藏是保证网络通信数据安全的重要手段之一,发送方可以通过密钥和特定算法将秘密信息嵌入到载体中,再由接收方通过密钥和特定算法提取出秘密信息。其中,图像因其易获取性和多样性,成为目前使用最为广泛的隐藏载体之一。信息隐藏技术不仅能够保证秘密信息本身的安全,还能保证载密图像进行可靠的传输,因而受到国内外学者的广泛关注及深入研究。传统自适应图像隐写算法对于待改变像素位置选择大多依赖人为经验设计,需要耗费
论文部分内容阅读
信息隐藏是保证网络通信数据安全的重要手段之一,发送方可以通过密钥和特定算法将秘密信息嵌入到载体中,再由接收方通过密钥和特定算法提取出秘密信息。其中,图像因其易获取性和多样性,成为目前使用最为广泛的隐藏载体之一。信息隐藏技术不仅能够保证秘密信息本身的安全,还能保证载密图像进行可靠的传输,因而受到国内外学者的广泛关注及深入研究。传统自适应图像隐写算法对于待改变像素位置选择大多依赖人为经验设计,需要耗费大量时间与精力。并且研究者们因考虑到载体图像嵌入秘密信息后造成的失真问题使得可隐藏容量变得极为有限。同时,随着深度学习的快速发展,深度学习网络对于复杂数据的强表征能力使其被应用到隐写分析领域中,使得隐写分析模型的判别性能快速提高。因此,为了解决传统图像隐写方法的低嵌入容量和安全性问题,本文旨在研究利用各类深度学习网络的不同优势构建基于深度学习的图像隐写模型,在扩展其隐写容量的情况下,进一步提升其安全性和载体图像的视觉质量。本文研究内容如下:(1)提出一种基于残差网络的大容量图像隐写模型,首先利用残差网络型编码器将秘密RGB图像和载体RGB图像作为输入,获得低失真率的含密载体图像,再利用由卷积神经网络组成的解码器从含密载体图像中重构出秘密图像。通过实验表明,该隐写模型相较于之前的工作,针对编码器的结构做出新的改进,在下采样卷积块和上采样卷积块中添加了残差模块提取更加复杂高维的图像特征,以此降低含有大容量秘密信息的载体图像的失真率。(2)提出一种基于生成对抗网络的高安全图像隐写模型(HIGAN),本文利用生成对抗网络模型的博弈论思想,将改进后适用于彩色RGB图像的隐写分析网络模型判别器,并通过不断地调整训练参数和训练方式,从而有效提升大容量图像隐写模型的安全性。此外,还设计了一种多元损失函数来衡量含密图像与载体图像之间的差异性,在保证含密图像视觉质量的同时,进一步提升图像隐写模型的安全性。最后,大量实验结果证明在大隐写容量下,本文提出的图像隐写模型其安全性获得了明显提升。
其他文献
乳腺癌是女性发病率和死亡率最高的恶性肿瘤,新辅助化疗是治疗乳腺癌的有效手段,有利于缩小肿瘤、降低肿瘤分期,将无法手术的肿瘤转化成可手术的肿瘤,提高患者无病生存率。临床医生根据自身经验以及患者的分子分型预估患者是否需要进行新辅助化疗,主观性较强且无法针对单一患者准确预测其化疗后的病理缓解程度,易导致化疗无效后患者错过最佳治疗时机。因此,本文旨在利用计算机图像处理技术对乳腺癌患者新辅助化疗前的全景穿刺
图像复原技术随着数字技术的发展,已被广泛应用于多个领域,是图像处理领域中一个重要的研究方向。传统图像复原方法如逆滤波法、维纳滤波法、最小二乘法等难以解决函数逼近问题,难以应用于复杂场景。本文主要使用生成对抗网络实现图像超分辨率重建和图像修复两方面的复原任务。图像超分辨率重建在预处理时会出现丢失部分图像重要的高频细节,重建图像过于光滑以及网络模型训练不稳定等问题。图像修复过程中存在受伪像影响、修复结
视觉目标跟踪(Visual Object Tracking)旨在对视频任意目标进行轨迹追踪,是计算机视觉领域中基础研究方向。目标跟踪技术在自动驾驶、机器视觉、智能监控、军事国防等领域得到了广泛应用。深度学习技术的发展大幅提高了目标跟踪算法的性能,但在应对相似目标干扰、非刚性形变、尺度变化剧烈挑战时,依然存在鲁棒性差、准确性低的难题,无法满足实际应用场景的需求。本文基于深度学习技术,提出两种基于多任
自动调制分类(Automatic Modulation Classification,AMC)是信号解调前一个复杂且重要的技术,它在军事领域和民用领域都有广泛的应用。近年来,由于机器学习算法的引入,使得AMC技术备受关注。基于机器学习的AMC算法相比于传统算法有更高的识别精度和鲁棒性。本文深入研究并做了以下几方面的工作:1.针对复杂信道情况下,由于调制信号受噪声干扰导致识别准确率不高的问题,提出基
正确判断脑部神经胶质瘤基因型是突变还是野生类型,将有助于医生做出正确的预后治疗。针对活体组织检查会对患者造成一定的伤害、人工观察核磁共振图像准确率低的情况,本文借助计算机辅助的方式对神经胶质瘤进行判断。本文以神经胶质瘤分型为目的,多序列核磁共振图像为数据基础,深度学习为方法,从预处理到肿瘤分型分别提出了不同的深度学习网络结构。本文的创新性工作包括以下内容:(1)针对预处理时,3D Slicer等软
第五代(The Fifth Generation,5G)通信系统采用更先进的通信技术对5G信道建模提出了更高的要求。在无线信道建模的研究领域中,最大的挑战是建立有效且准确的信道模型,能够模拟影响无线通信系统性能分析的所有传播特性。车对车(Vehicle-to-Vehicle,V2V)信道建模作为5G信道建模研究的热点之一,越来越受到研究人员的关注。在V2V通信场景中,发送端(Transmitter
随着物联网的迅速发展,射频能量采集技术的应用范围也逐步扩大。作为射频能量采集系统中的能量接收和转换器件,整流天线在系统中发挥着重要的作用。整流天线的一个研究方向是在有限的功率密度环境下尽可能地吸收更多能量以提高能量转换效率。实际的能量采集过程中,天线的辐射方向、极化方式以及与整流电路的合并方式等都制约着能量采集系统的接收能力。本文设计了极化可重构全向圆极化天线,通过切换极化方式在辐射范围内提高天线
随着图像处理技术的发展和嵌入式硬件的进步,基于机器视觉的无人机着陆已经成为非常热门的研究领域。无人机视觉着陆控制是无人机飞行控制系统的关键技术之一,它对无人机着陆的稳定性,准确性,可靠性和实时性能有很高的要求。基于视觉的着陆系统是学者们研究的热点,与传统的系统相比,该系统具有成本低、抗干扰能力强的优点。实现无人机视觉着陆的基本要求是获取无人机所处环境的信息并通过该信息准确估计无人机的位姿姿态,其中
由于光照、色调等因素的干扰,采集自不同摄像头的同一个行人的图像通常存在视觉差异,而不同行人的图像却可能很相似,因此往往很难用线性模型来区分它们。我们通过对传统的只能用于单视图场景的协同表示分类器(CRC)进行跨视图非线性扩展,提出跨视图核协同表示分类(CV-KCRC)框架并将之应用于行人重识别。CV-KCRC不仅能增强CRC处理跨视图异类样本线性难分问题的能力,而且还能提升了模型的判别力和鲁棒性。
近年来,物联网(Internet of Things,Io T)技术发展迅速,其应用领域已经扩展到智能家居、智能医疗、农场监测和智慧交通等方面。由于无线通信环境的开放性,安全与隐私问题是物联网发展的关键因素。认证方案是实现物联网安全的第一道防线,但是单一认证方案容易造成传感器节点认证的延迟、网络资源占用问题,而群组认证方案能够提高网关对节点的认证效率,适合节点数目繁多的物联网环境。此外,若节点以真