Mkx调控肌腱异位骨化的效应和机制研究

来源 :浙江大学 | 被引量 : 0次 | 上传用户:huangxinyu322
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
肌腱异位骨化是以肌腱组织中出现成骨细胞并形成骨组织为特征的临床难治性疾病,常继发于肌腱损伤或手术创伤。肌腱异位骨化可导致不同程度的疼痛、水肿、关节活动受限、肌腱力学性能下降甚至断裂,严重影响患者生活质量。目前,临床上常采用局部注射非甾体类抗炎药、糖皮质激素或冲击波治疗等方法来缓解症状,尚无有效疗法能够治愈肌腱异位骨化。虽然近年来针对肌腱异位骨化的研究揭示了损伤、炎症等因素在病理过程中的重要作用,对新型治疗方案的开发有一定的指导意义,但目前仍存在两个关键问题有待解决:1)肌腱异位骨化过程中的关键转录调控因子是什么?2)肌腱异位骨化过程中的关键转录因子如何调控肌腱细胞亚群命运?针对这两个问题,本文立足于课题组前期关于肌腱细胞分化调控的研究基础,进行了系统性探究。主要内容如下:第一章通过数据挖掘和免疫荧光分析,发现转录因子Mohawk(Mkx)在异位骨化肌腱中表达降低。基因敲除小鼠分析发现,Mkx敲除导致肌腱成软骨和成骨相关基因表达升高,跟腱、髌腱和尾腱发生异位骨化,表明Mkx能够维持肌腱稳态、抑制异位骨化。第二章利用双分子荧光互补技术,筛选获得与Mkx互作的蛋白列表,发现Mkx与组蛋白以及组蛋白结合相关蛋白存在互作关系。表观修饰和转录组分析显示,Mkx敲除导致血管、软骨和骨谱系关键基因H3K27ac修饰水平和基因表达水平升高,提示Mkx可能通过调控肌腱细胞表观修饰影响基因表达。第三章利用单细胞测序对正常和Mkx敲除肌腱细胞进行转录组分析,发现二者细胞亚群的异质性结构相似。基因差异表达分析显示Mkx敲除后所有细胞亚群均高表达血管形成相关基因,肌腱祖细胞高表达成软骨相关基因,成肌腱细胞和肌腱细胞高表达成骨相关基因,表明Mkx敲除通过促进血管形成并特异性升高不同细胞亚群成软骨和成骨相关基因的表达从而导致异位骨化。第四章基于以上研究发现,探讨了小分子药物用于肌腱异位骨化治疗和预防的可行性和有效性。结果表明,成血管抑制剂BIBF1120能够缓解Mkx敲除和损伤导致的肌腱异位骨化,是潜在的异位骨化防治药物。综上所述,本文以疾病为切入点,从分子和细胞层面阐释了肌腱异位骨化的病理机制,获得系列新发现和潜在的可用于治疗肌腱异位骨化的小分子药物,为深入理解肌腱异位骨化的病理机制提供了新角度,为创新研发肌腱异位骨化的治疗药物提供了新思路。
其他文献
核酶是一类具有催化活性的非编码RNA分子,在细胞内参与多种重要的生命活动,包括t RNA加工、内含子剪切、蛋白质合成等。根据催化机制不同,核酶可被分为两类:金属依赖型核酶和自剪切型核酶。已有研究表明,自剪切型核酶一般采用广义酸碱催化机制进行位点特异性的自剪切。目前,已发现的自剪切型核酶一共有十类,hammerhead、HDV、VS、hairpin、glm S、twister、pistol、twis
近年来基于深度学习的JPEG图像复原方法取得了突破性的进展,但在实际应用中仍然存在诸多掣肘,如多尺度学习模型存在的模型臃肿及复原纹理不自然等问题,双域学习模型难以解决彩色图像复原及动态图像压缩质量复原等问题,以及深度模型所带来的模型参数量过大等问题。本文针对上述问题,分别从感受野模型,双域学习模型,模型压缩等方面对基深度学习的彩色JPEG图像复原算法展开了深入研究:第一,针对多尺度学习模型存在的模
帧插值算法是视频增强领域的核心技术,其主要任务是利用视频相邻帧的图像信息预测出中间帧。帧插值技术既可以用于帧率提升、慢动作视频等直接应用,也可以作为基础核心技术用于视频超分辨率、视频编解码等领域,其关键点在于如何准确地提取运动信息。基于显式运动匹配的帧插值算法在过去得到最为广泛的研究,但是这种方法容易受到诸如遮挡、光照变化、运动模糊等实际因素的干扰。虽然过去近二十年的研究在一定程度上改善了上述问题
随着人脸识别技术的发展,基于人脸的身份认证系统被广泛应用在各个领域,虽然目前的人脸识别技术能够应对不同情况下的检测,但是依然难以区分摄像头前的人脸是真人的还是照片或者视频。因此,兼顾实用性和可靠性的人脸活体检测技术是人脸认证系统的广泛应用的基础,具有重要的研究价值。现有的算法虽然已经取得了不错的检测效果,但是仍然面临诸多难题,如现有方法易受光照的影响;传统的算法以人脸区域作为输入,损失了图像上下文
在空间域光学模拟计算中,信息加载在空间光场的波前上,并利用光场的空间干涉过程来实现信息处理和计算功能。由于充分利用了光场空间干涉过程的并行性,空间域光学模拟计算器件和系统相比于电子器件和系统来说具有速度快、功耗低、带宽大、可扩展性好等优势,可用于科学与工程领域的一系列实际的计算任务。例如,光学空间微分器有望用于实时、大通量的图像处理;空间域光学伊辛机适用于解决计算科学中的组合优化问题。本文研究了用
大脑控制着人体与外界环境的信息交互及认知活动,掌管着感知、思维、记忆等高级活动。对大脑组织功能的探索是近年来研究的热点与挑战。传统研究方法通常使用间接手段观测大脑的活动状态,并且依赖血液动力学响应函数等模型假设或其他数学、统计学假设进行分析研究,对大脑响应过程的研究仍存在局限性;此外,大脑神经元数量众多,扫描采集数据量巨大,常依赖感兴趣脑区、数据降采样等方法缩小数据规模,在全脑尺度对大脑响应活动进
透射电子显微镜三维重构方法已经成为研究材料微观组织结构间交互作用等挑战性课题的重要工具,为了进一步推进三维重构方法的广泛应用,需要设计新的实验设备,突破其理论和实践瓶颈。本文工作中,作者自主研发了应用于透射电子显微镜的四自由度原位纳米操纵系统(简称为X-Nano系统),设计并制造了微型压电纳米操纵器,实现三向平移及旋转自由度的稳定、精确操纵,从多个方面提高了三维重构的效率和质量。此外,XNano系
视觉平面姿态跟踪旨在时序上连续估计目标平面在空间中的姿态,是许多计算机视觉高层应用的基础核心。近些年,随着高速摄像机的发展和硬件计算能力的提升,基于区域的姿态跟踪算法渐渐成为相机姿态估计以及视觉SLAM中的主流工具。然而,大多数现有系统仍然需要在特定环境与场景下才能发挥良好性能,复杂环境下准确、鲁棒、高效的平面姿态跟踪依旧充满挑战。一方面,现实生活中复杂多变的外界干扰,如光照变化等,严重制约了这类
第一部分颅内静脉回流影响急性缺血性卒中患者再灌注治疗结局目的:明确颅内静脉整体回流状态对急性缺血性卒中(AIS)再灌注治疗结局的影响。方法:回顾分析本中心2009年5月至2019年3月期间行头颅多模式CT且接受再灌注治疗的前循环AIS患者。四维CT血管成像(4D-CTA)评估蝶顶窦、大脑中浅静脉、Labbé静脉、Trolard静脉、丘纹静脉、大脑内静脉、基底静脉充盈情况并获得颅内静脉显影评分(CV
生长和溶胀是普遍存在于生物组织和部分软聚合物中的复杂的物理化学反应,往往表现为外在的体积变化和表面失稳演化以及内在的残余应力的积聚。更好地了解其实质或机理不仅能够有助于理解生物组织的生长发育,病变,衰老和死亡,同时可以辅助我们设计相关的工业应用,例如水凝胶的模态自组装和4D仿生打印等。经典体生长模型通过利用乘法分解方法,实现了模拟生长过程中的体积变化和残余应力的积聚现象。其核心在于将总的生长变形分