【摘 要】
:
氧化物弥散强化(Oxide Dispersion Strengthened,ODS)钢因其优异的高温强度、高温蠕变性能以及抗辐照性能,被认为是清洁能源热端部件最佳的候选结构材料之一。本工作针对ODS钢高脆性和难以工业化生产的问题,主要通过真空感应熔炼(Vacuum Induction Melting,VIM)+保护气氛电渣重熔(Electro-Slag Remelting,ESR)的两步熔炼工艺制
论文部分内容阅读
氧化物弥散强化(Oxide Dispersion Strengthened,ODS)钢因其优异的高温强度、高温蠕变性能以及抗辐照性能,被认为是清洁能源热端部件最佳的候选结构材料之一。本工作针对ODS钢高脆性和难以工业化生产的问题,主要通过真空感应熔炼(Vacuum Induction Melting,VIM)+保护气氛电渣重熔(Electro-Slag Remelting,ESR)的两步熔炼工艺制备氮氧化物强化的N-ODS钢,深入分析了氧化型渣系成分和电渣重熔过程对N-ODS钢微观组织、析出相特征以及力学性能的影响,并给出了电渣重熔工艺的优化方向以及渣系中氧化物组元的选取标准。得出的主要结论如下:(1)淬火温度在1050℃时,N-ODS钢具有优异的抗拉强度和冲击韧性,具有中间随炉冷却过程的两次淬火回火工艺(FC&2Q&2T)可以有效提高N-ODS钢的综合力学性能,且在1050℃炉冷时N-ODS钢的韧塑性并未有明显降低,因此炉冷时间需要与淬火温度相适应才能起到综合的强化效果。(2)渣系组元Ca O向钢中增氧的能力较差,且低氧含量的N-ODS钢中氧化物密度不足且Cr23C6相粗化严重,而通过氧化型渣系向钢中增氧制备N-ODS钢的方法具有很强的可行性。实验表明在Al2O3渣系中引入Ti O2和Cr2O3后可以显著增强渣系的增氧能力,进一步改善了N-ODS钢析出相的类型、尺寸及其力学性能。(3)熔炼N-ODS钢高温力学性能的提升主要得益于基体中高密度纳米氧化物析出相以及微米级“核壳”结构析出相的高温稳定性与第二相强化作用。“核壳”结构可以明显改善微米级氧化物与基体的浸润性,减弱界面处的应力集中,从而全面提高熔炼N-ODS钢的力学性能。(4)电渣重熔(ESR)过程可以有效细化真空感应熔炼过程中生成的粗大的析出相,并对析出相的类型进行重组,从而提高N-ODS钢的力学性能。通过ESR制备不含Y的N-ODS钢的过程中,钢中大尺寸的微米级Ta-Ti-O以及针状的亚微米级的Cr-V-O-N析出相会被吸附进入渣池中,成品钢基体中的析出相得到细化。
其他文献
氢能作为一种高能量密度且无污染的能源载体,被视为化石燃料能源的理想替代品。电解水制氢技术,由于能将风能、太阳能、潮汐能等可再生能源产生的电能用于制取氢气,被认为具有极大的应用前景。然而,因电解水反应的阳极反应为析氧反应,该反应涉及到缓慢的四电子转移过程,这严重降低了电解水产氢的效率。因此,探索制备高活性析氧反应电催化剂具有重要意义。此外,用氧化电位更低的有机小分子氧化反应替代析氧反应也是一种优化阳
钠离子电池资源和成本优势显著,有望成为下一代商业化电化学储能系统。PBAs(普鲁士蓝类材料)是目前最有应用前景的钠离子电池正极材料之一。晶体缺陷(结晶水和[Fe(CN)6]4-空位等)是影响PBAs结构稳定性的主要因素。螯合剂能有效降低[Fe(CN)6]4-空位含量,但添加量大,存在成本和环境问题。而结晶水对PBAs电化学性能的影响仍很大争议。针对上述问题,本文开展了反应物优化、结晶水作用机制分析
随着经济和社会的快速发展,环境中有毒有害气体日益增加,其中挥发性有机物(VOCs)作为一类典型污染物,严重危害人类健康。因此,如何对VOCs进行快速监测和预警是亟待解决的难题。气敏传感器法作为一种典型的气体监测手段,具有成本低、灵敏度高、易使用等优点,但其仍存在选择性差、测试时间长的问题。基于上述背景,本文提出将气敏传感器与机器学习模型结合的方法,使用多分类模型处理传感器捕获的电信号,以实现气体高
压电陶瓷是一种重要的电子功能材料,广泛应用于传感器、执行器及超声换能器之中。近些年,随着航空航天、新能源及汽车制造等工业的发展,对于能在高温下应用的压电材料十分迫切。BiFeO3-BaTiO3(BF-BT)压电陶瓷不仅居里温度很高,同时其压电性能也较优异,引起了人们的重点研究。本文选用具有准同型相界的0.7BF-0.3BT陶瓷组分。系统研究了烧结工艺、增加Bi含量及固溶铁电体等方法,对于BF-BT
二维有机无机杂化钙钛矿材料因为高荧光量子产率、较高的激子结合能、高稳定性以及带隙可调等优异的性能引起了人们的广泛关注,在太阳能电池、发光二极管和光电探测器等光电器件领域具有非常广阔的应用前景。有机层与无机层交替堆叠形成的多重量子阱结构不仅使二维钙钛矿拥有不同于三维结构的光物理性能,而且可以通过有机层结构调节改变其内部激子的性质从而表现出迥异的光电性能。本文以高效发光和新型功能二维有机无机钙钛矿为研
本文以用于金属制乏燃料干法贮存容器的有机涂层为研究对象,设计了两种涂层涂覆方案,分别为(1)基体+环氧富锌底漆+环氧云铁中间漆+丙烯酸面漆;(2)基体+环氧富锌底漆+环氧云铁中间漆+氟碳面漆,针对其实际服役环境,进行了盐雾老化、氙灯老化、耐温老化和硼酸老化四种耐老化试验,通过涂层附着力实验和电化学阻抗谱实验表征了涂层的耐老化性能,通过对涂层老化前后红外光谱、XRD、SEM、接触角测试、CSV和XP
币族金属铜的储量丰富,且其一价化合物具有一些优异的性质。炔配体可以作为σ和π电子给体与铜配位,展现丰富的配位模式,可以构筑多样的炔铜化合物。但炔配体和Cu+反应极易生成难溶的聚合物,并且Cu+离子易被氧化而稳定性差。在此文中,本实验克服了这些难题,成功合成了 13种原子级精确的炔铜(Ⅰ)化合物和团簇,并研究了它们的光致发光等性质。(1)基于结晶诱导发光机理调控团簇的发光性质。以Cu20和Cu24团
金属氧化物气体传感器因具有较高的灵敏度、低成本、工作电路简单等优点而受到市场青睐。但金属氧化物气体传感器选择性差,是掣肘其发展和应用的主要技术瓶颈。针对金属氧化物气体传感器选择性差的缺点,本论文设计了一种获得气体高选择的方法,将催化材料喷涂到气敏膜表面制备得到催化膜/气敏膜叠层结构,并结合高速温度调制技术,促使待测气体在低温阶段能扩散透过催化膜,而在高温阶段被上层催化膜催化分解,产生的分解产物扩散
热电半导体作为一种清洁无排放的新型功能材料,能够实现电能与热能的相互转换。Bi2Te3基热电材料在近室温范围内表现出优异的热电性能,如何使用简单有效的方法进一步提升其热电性能,是众学者所关注的问题。本文通过复合氧化物第二相得到高性能的P型Bi0.5Sb1.5Te3基复合热电材料。而相比于Bi2Te3基材料,MgAgSb作为新型近室温热电材料,元素储量丰富,成本低毒性小,但制备纯相困难。因此本文研究
可逆固体氧化物电池(RSOC)是一种通过电化学过程来发电或存储能量的装置。其可以在燃料电池(SOFC)和电解池(SOEC)模式下工作。RSOC氧电极材料需要同时具备高的氧还原催化性能(ORR)和氧析出催化性能(OER),并且需要具备良好的稳定性。目前,简单钙钛矿结构的La0.6Sr0.4Co0.2Fe0.8O3-δ(LSCF)是常见的氧电极材料。然而,在长时间工作时,LSCF氧电极的电催化活性和稳