结合深度学习的门牌辅助服务机器人自定位方法

来源 :天津大学 | 被引量 : 0次 | 上传用户:zhaogaoheng123
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着计算机和自动化技术的发展,越来越多的移动机器人进入人们的生活,服务于社会的方方面面,尤其是在酒店服务、老年护理和医疗保健等行业受到人们的广泛欢迎。导航是移动机器人技术的核心,而定位是移动机器人导航的基本问题,只有准确的定位才能保证服务机器人可靠地完成任务。针对现有移动机器人室内定位方法存在准确性偏低和环境适应性较差等问题,本文采用深度学习结合特征点匹配的方法研究了利用门牌自然路标进行服务机器人辅助定位的方法。主要工作总结如下:(1)搭建了服务机器人软硬件平台。介绍了服务机器人硬件规格和整体结构,基于ROS(Robot Operating System)设计了服务机器人的系统程序架构,基于Qt为服务机器人设计了人机交互界面并实现了简单的人机交互功能。(2)提出了一种基于深度学习门牌检测并结合传统图像处理的门牌号识别方法。首先,利用深度学习将门牌区域提取出来;然后,对门牌区域进行阈值分割,并使用改进旋转投影法对门牌区域进行倾斜校正;最后,对门牌数字提取方向梯度直方图(Histograms of Oriented Gradient,HOG)特征,利用KNN(k-Nearest Neighbors)算法实现门牌号识别。(3)提出了一种基于特征点匹配构建Pn P(Perspective-n-Point)问题并通过坐标变换实现服务机器人定位的方法。首先,建立门坐标系,设定门牌透视变换角点并测量其物理坐标,制作门牌正视模板;然后,通过深度学习检测获得门牌区域并与门牌模板进行SURF(Speeded Up Robust Features)特征点的匹配,得到门牌透视变换角点在门牌区域的像素坐标,通过3D-2D坐标的对应关系求解Pn P问题获得相机位姿;最后,通过坐标变换计算机器人位姿。(4)通过机器人室内实验验证了本文提出定位方法的可行性。首先,设计了服务机器人路径规划及导航方法;其次,分析了本文方法获得的机器人坐标误差并与自适应蒙特卡洛定位(Adaptive Monte Carlo Localization,AMCL)方法进行了比较,通过在不同位置进行自主探索门牌的实验证明机器人全局位姿初始化的有效性;最后,设计了两个对比实验,一是对比里程计定位轨迹和里程计融合本文方法的定位轨迹,二是对比AMCL定位轨迹和AMCL结合本文方法的定位轨迹,实验说明了本文提出的方法进行服务机器人辅助定位的可行性。
其他文献
在传统家具生产行业收入下滑的背景下,定制家具行业以超30%的增速飞快发展,生产企业超过上万家,其中90%均属于中小型企业,各工厂虽然引进了先进的生产设备,但在排产方面仍处于半自动状态,导致排产效率低、原材料浪费严重,并且还增加了人力成本,而原材料及人力成本是除生产机器成本外最重要的成本投入,所以排产排样算法的研究,对于降低成本以及提高排产效率具有重要意义。在排产方面,通过设计排产原则,并与数据库结
随着互联网技术与数字经济的发展,基于深度学习技术处理网络结构数据的网络表示学习方法吸引了学术界和工业界的共同关注,其旨在将网络中的节点表示为低维、稠密的实值向量,并有效地保留网络结构及其他有价值信息。现有的大多数网络表示学习方法在学习节点表示时很少考虑网络的属性信息,而网络属性信息往往蕴含着非常有价值的信息。知识图谱是基于图结构的数据模型,其能够自然刻画现实世界中实体之间广泛联系的网络结构数据,能
在自然界与现实生活中,纹理图像随处可见,研究人员对使用计算机合成纹理图像进行了深入研究,提出了很多纹理合成算法。在本文中,对于传统纹理合成算法以及基于卷积神经网络的纹理合成算法进行了研究与比较,发现了现有方法的不足之处:使用传统的纹理合成算法对于有的纹理种类不具有普适性,生成的纹理图像可能会模糊;使用现有的基于卷积神经网络的方法,由于现存方法的输入图像大小固定,网络结构固定,卷积之后需要将图像恢复
目前,网络已经成为复杂系统建模和分析的有效工具。现实世界中存在着各种网络,例如社交网络,技术网络和生物网络。目前研究者对网络分析进行了广泛的研究,以更加深入地了解网络本质。传统的网络表示方法不能很好地揭示网络的深层特征,因此网络表征学习研究成为了网络分析任务的研究热点。网络表征的学习目标是学习每个网络节点的低维高密度连续向量,该向量不仅可以度量网络中节点之间的空间关系,还可以揭示深层的网络节点之间
谈判是一种在日常生活中经常使用的一种沟通交流行为,通过人与人之间的信息交换以及方案的交换来解决一系列的在最终谈判问题上的分歧并达成双方满意的谈判结果。当前人们对自动谈判技术也有了浓厚的兴趣,越来越多的人开始进行自动谈判智能体的研究,人们对人机谈判智能体研究的目的是构造一个拥有人类谈判技巧且十分智能的智能体,并通过这样的研究最终为谈判交互或者训练人类的谈判技巧提供帮助传统的谈判中人们可能会受到多种因
近些年来,带有高质量像素级分割标签的大规模训练数据极大地驱动了深度学习模型用于分割领域的性能。然而,用于分割任务训练集的注释是非常费力的,因为注释必须逐像素地完成。在这种耗时耗力的情况下,本文考虑到不同样本对分割模型的贡献可能相差很大,有些图像对模型的增益很大,但是也有些图像对模型的增益作用很小,也就是说,并非所有图像都需要注释。如何充分利用大规模未标记图像来增强分割模型的性能并用最少的人工成本对
气体传感器一直是传感器领域的重要研究方向,实现对有机气体组分的实时监控、有效识别和区分,对环境监测、安防、健康、医疗等各个领域具有非常重要的意义。然而,气体传感器技术仍面临着诸多挑战:例如,如何构建尺寸小、灵敏度高、响应快、以及成本低的气体检测系统等。薄膜体声波谐振器(FBAR)具着灵敏度高、尺寸小、响应快、成本低、易于实现阵列化以及可输出多种传感参数等特点,这些优点使得FBAR得到了广泛的关注。
基于稳态运动视觉诱发电位(steady state motion visual evoked potential,SSMVEP)的脑计算机接口(brain-computer interface,BCI)融合了人类视觉系统的运动感知功能,可减轻由SSVEP强烈视觉刺激引起的不适感和适应性,引起了广泛关注。然而,SSMVEP范式下依然存在被试者长时间精神集中出现的疲劳状态,这种疲劳状态将直接影响BCI
近年来,卷积神经网络由于其较高的分类精度而广泛应用于图像分类、目标检测以及场景分割等计算机视觉任务。卷积神经网络的分类精度随着网络层数的增加而提高。然而,伴随着网络加深,网络规模变大,需要的计算量剧增,采用软件运行卷积神经网络算法将会是一项非常耗时的工作。各种硬件加速器应运而生,以提高卷积神经网络模型的计算性能并满足嵌入式设备对于实时性、低功耗的要求。其中,现场可编程门阵列由于其强大的并行计算能力
计算机视觉技术和深度学习的快速发展为打造大规模、无人化养殖农场带来了新的机遇。利用计算机视觉技术实现猪个体识别,以提高猪场的管理效率成为近年来的研究热点。不同猪个体之间脸部特征较为明显,可通过识别猪脸确定猪个体身份,但实际养殖中脏乱的环境为猪脸识别带来很大困难。本文提出了一种基于多尺度卷积神经网络的猪脸识别算法,通过加深网络层数和拓展网络宽度提高了网络对猪脸图像的特征提取能力。利用对称拆分和非对称